期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
开源设计社区中成员结构对知识协作网络进化的影响 被引量:5
1
作者 胡杨 张晓冬 +1 位作者 王翠翠 龚晨建 《计算机集成制造系统》 EI CSCD 北大核心 2015年第4期1150-1156,共7页
为探索开源设计社区中不同成员构成对知识协作网络进化的影响,建立了开源设计社区知识协作网络进化过程模型,刻画了主体—任务知识匹配机制、协作伙伴选择机制、知识溢出机制和知识增长机制。使用多主体建模及仿真方法实现了开源设计知... 为探索开源设计社区中不同成员构成对知识协作网络进化的影响,建立了开源设计社区知识协作网络进化过程模型,刻画了主体—任务知识匹配机制、协作伙伴选择机制、知识溢出机制和知识增长机制。使用多主体建模及仿真方法实现了开源设计知识协作网络进化过程的仿真。设计了一系列仿真实验,研究了不同数量比例的成员结构对知识协作网络进化的影响。实验结果表明,增加精英主体的比例能够显著提高项目的成长速度,但随着精英主体的增加,精英主体带来的项目成长速度与知识增长效应逐渐衰弱。基于仿真结果提出了开源设计社区的管理建议。 展开更多
关键词 开源设计社区 成员结构 知识协作网络 精英主体 进化过程模型
在线阅读 下载PDF
Gaussian process assisted coevolutionary estimation of distribution algorithm for computationally expensive problems 被引量:2
2
作者 罗娜 钱锋 +1 位作者 赵亮 钟伟民 《Journal of Central South University》 SCIE EI CAS 2012年第2期443-452,共10页
In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in paral... In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm. 展开更多
关键词 estimation of distribution algorithm fitness function modeling Gaussian process surrogate approach
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部