最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS...最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。展开更多
针对最小二乘支持向量机最佳算法参数难以确定的缺陷,提出了基于文化差分进化算法的最小二乘支持向量机(Cultural Differential evolution Algorithm Least Square Support Vector Machine,CDE-LSSVM)。该算法通过新型的文化差分进化算...针对最小二乘支持向量机最佳算法参数难以确定的缺陷,提出了基于文化差分进化算法的最小二乘支持向量机(Cultural Differential evolution Algorithm Least Square Support Vector Machine,CDE-LSSVM)。该算法通过新型的文化差分进化算法优化确定最小二乘支持向量机核宽度参数和惩罚系数,建立具有良好预测性能的模型。同时,针对药物定量构效关系(Quantitative Structure-Activity Relationships,QSAR)模型具有高度非线性、变量之间存在相关性的特征,采用CDE-LSSVM建立HIV-1蛋白酶抑制剂的药物定量构效关系模型。模型具有很好的拟合精度与预测精度,且优于最小二乘支持向量机、BP神经网络和径向基神经网络。展开更多
文摘最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。