期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
进化多目标距离矩阵聚类研究 被引量:3
1
作者 刘丛 邬春学 《小型微型计算机系统》 CSCD 北大核心 2016年第6期1298-1302,共5页
聚类分析在科学研究和现实生活中都有广泛的应用.然而,当前的聚类算法仍然面临一些挑战,自动确定最佳聚类数目和复杂分布数据聚类是最主要的两种,自动确定复杂分布数据的聚类数目并对其正确聚类是两者的结合.提出一种基于进化多目标的... 聚类分析在科学研究和现实生活中都有广泛的应用.然而,当前的聚类算法仍然面临一些挑战,自动确定最佳聚类数目和复杂分布数据聚类是最主要的两种,自动确定复杂分布数据的聚类数目并对其正确聚类是两者的结合.提出一种基于进化多目标的距离矩阵聚类算法(Multi-objective Distance Matrix Evolutionary Clustering,MODMEC).首先使用一种实数-标签的编码方式表示染色体,该染色体可两次解码成聚类候选解.其次使用聚类代表点代替聚类中心点设计聚类算法,通过类内紧凑度和类间离散性自动确定最佳聚类数目.最后使用进化多目标框架并行优化.将MODMEC在不同分布的五种人工测试集和两种UCI测试集上与四种常用的聚类算法做了比较.实验结果表明,M ODM EC在检测最佳聚类数目和聚类精度上都获得了良好的效果. 展开更多
关键词 最佳数目 进化多目标算法 进化多目标距离矩阵聚类
在线阅读 下载PDF
基于多目标进化算法的多距离聚类研究 被引量:4
2
作者 刘丛 万秀华 +1 位作者 彭敦陆 邬春学 《计算机应用研究》 CSCD 北大核心 2019年第1期94-98,共5页
传统的聚类算法通常基于单一的距离度量而设计,如何将多种距离度量有机融合在一起是当前面临的一个挑战。提出了一种基于多目标进化算法的多距离度量聚类框架(multiobjective evolutionary multiple distance measure clustering,MOMDC)... 传统的聚类算法通常基于单一的距离度量而设计,如何将多种距离度量有机融合在一起是当前面临的一个挑战。提出了一种基于多目标进化算法的多距离度量聚类框架(multiobjective evolutionary multiple distance measure clustering,MOMDC),并使用欧氏距离和Path距离来设计实际框架。该框架将数据集分别用两种距离测度预聚类,而后将预聚类结果作合并,以降低问题的规模,分别计算子类间的两种距离关系;最后使用多目标进化算法在两种距离空间中并行聚类。在多目标进化算法设计中,使用实数—标签的编码方式来设计染色体,并且设计了基于两种距离测度的两个适应度函数对染色体进行评估。最终将MOMDC与其他几种经典算法在大量的数据集上进行实验对比。实验表明,该框架对不同分布的数据集均能取得良好的结果。 展开更多
关键词 相似性度量 距离矩阵 多目标RM-MEDA进化算法 标签—实数编码
在线阅读 下载PDF
农业机器人采摘目标识别技术研究——基于FCM模糊聚类算法 被引量:3
3
作者 冯高峰 《农机化研究》 北大核心 2024年第3期30-33,41,共5页
介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采... 介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采用该方法对农作物轮廓分割识别度较高,算法计算效率较快,验证了其可靠性,该方法可用于目标农作物的分割和目标识别。 展开更多
关键词 农业机器人 FCM 模糊 隶属度矩阵 目标识别
在线阅读 下载PDF
基于流形距离的量子进化聚类算法 被引量:16
4
作者 李阳阳 石洪竺 +1 位作者 焦李成 马文萍 《电子学报》 EI CAS CSCD 北大核心 2011年第10期2343-2347,共5页
基于量子计算的机理和特性,并结合进化计算,本文提出了一种新颖的量子进化聚类算法(QEAM),在该聚类算法中引入了一种新的距离测度函数——流形距离.新方法将聚类归属为优化问题,通过运用量子进化的机理更快地搜索到最优聚类中心,从而得... 基于量子计算的机理和特性,并结合进化计算,本文提出了一种新颖的量子进化聚类算法(QEAM),在该聚类算法中引入了一种新的距离测度函数——流形距离.新方法将聚类归属为优化问题,通过运用量子进化的机理更快地搜索到最优聚类中心,从而得到最优隶属度矩阵划分;同时,通过基于流形距离的相似性度量,有效利用样本所具有的全局一致性信息,充分挖掘样本的空间分布信息,对样本进行正确的类别划分.将本文算法(QEAM)与基于流形距离的免疫进化算法(IEAM),遗传聚类算法(GAC)以及模糊C-均值算法(FCM)进行了性能比较,对6个人工数据集和3个UCI数据集的仿真实验结果显示,QEAM对样本空间分布复杂的聚类问题具有较高的准确率和较好的鲁棒性. 展开更多
关键词 量子计算 量子进化算法 数据 流形距离
在线阅读 下载PDF
基于互补空间信息的多目标进化聚类图像分割 被引量:12
5
作者 赵凤 刘汉强 范九伦 《电子与信息学报》 EI CSCD 北大核心 2015年第3期672-678,共7页
现有的多目标进化聚类算法应用于图像分割时,没有考虑图像的任何空间信息,使得该类算法在含噪图像上的分割性能不理想。该文鉴于图像的局部空间信息和非局部空间信息的互补性,试图将这两种空间信息同时引入到聚类有效性函数中,构造了融... 现有的多目标进化聚类算法应用于图像分割时,没有考虑图像的任何空间信息,使得该类算法在含噪图像上的分割性能不理想。该文鉴于图像的局部空间信息和非局部空间信息的互补性,试图将这两种空间信息同时引入到聚类有效性函数中,构造了融合互补空间信息的目标函数,进而提出了应用于图像分割的基于互补空间信息的多目标进化聚类算法。该算法采用染色体可变长编码策略在进化过程中自动确定图像分割数目,减少了人为干预。自然图像的分割实验表明,该算法不但能在含噪图像上取得较为满意的分割性能,而且适用于多种类型的含噪图像。 展开更多
关键词 图像分割 多目标进化 互补空间信息 局部空间信息
在线阅读 下载PDF
最优聚类中心雷达目标一维距离像识别 被引量:5
6
作者 周代英 沈晓峰 杨万麟 《系统工程与电子技术》 EI CSCD 北大核心 2002年第4期44-46,85,共4页
提出了一种基于最优聚类中心的雷达目标一维距离像识别方法。该方法利用训练数据集建立最小平方距离准则下的最优变换矩阵 ,使用该变换矩阵可增大同类目标的特征聚合性 ,从而减少同类之间差异 ,同时 ,通过在子像空间选定一组最优聚类中... 提出了一种基于最优聚类中心的雷达目标一维距离像识别方法。该方法利用训练数据集建立最小平方距离准则下的最优变换矩阵 ,使用该变换矩阵可增大同类目标的特征聚合性 ,从而减少同类之间差异 ,同时 ,通过在子像空间选定一组最优聚类中心来增大异类目标特征的可分离性 ,加大异类之间差异 ,提高雷达目标识别率。仿真实验结果表明了该方法的有效性。 展开更多
关键词 雷达目标识别 一维距离 最优中心 最优变换
在线阅读 下载PDF
一种基于聚类预测模型的动态多目标进化算法 被引量:2
7
作者 周江 王国华 赵跃龙 《湖南师范大学自然科学学报》 CAS 北大核心 2014年第2期56-61,共6页
为了在动态环境中快速地跟踪变化后的最优解集,提出一种基于聚类预测模型的动态多目标优化算法.通过对种群聚类,提高预测解集的分布性与广泛性,为分段预测做准备,然后利用历史信息对每个子类的中心点和形状进行预测,在环境变化后,预测... 为了在动态环境中快速地跟踪变化后的最优解集,提出一种基于聚类预测模型的动态多目标优化算法.通过对种群聚类,提高预测解集的分布性与广泛性,为分段预测做准备,然后利用历史信息对每个子类的中心点和形状进行预测,在环境变化后,预测产生的每个子类共同构成整个新的初始种群,有引导性地增加了种群的多样性,使算法能快速跟踪新的最优解集.在标准动态测试问题上进行算法测试,实验结果表明所提算法能快速地适应环境的动态变化,所获解集具有较好的收敛性和分布性. 展开更多
关键词 动态多目标 预测 进化算法
在线阅读 下载PDF
基于热点解和差分进化的多目标聚类集成算法 被引量:2
8
作者 李莉 李妍琰 《计算机工程与设计》 CSCD 北大核心 2014年第8期2912-2916,共5页
针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强... 针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强潜在最优区域的搜索;在后续集成操作中只采用热点解及其邻域个体,去除较差解对最终结果的影响。在优化过程中采用改进的差分进化算子提高全局寻优的能力,去除编码长度不一对算子使用的影响。对3组UCI数据的测试结果表明,该算法优于2种对比算法,其RI取值提高了0.0021~0.0524,FM取值提高了0.0134~0.0591。 展开更多
关键词 多目标 集成 热点解 差分进化 全局寻优
在线阅读 下载PDF
三维微阵列数据的多目标进化聚类 被引量:1
9
作者 刘军万 李舟军 陈义明 《计算机工程与科学》 CSCD 2008年第12期128-130,共3页
聚类技术广泛应用于微阵列数据分析中。在基因-样本-时间GST微阵列数据矩阵中,挖掘三维聚类成为当前的热门研究课题。3D聚类过程经常需要对多个相互冲突的目标进行优化,而且进化算法以其强大的探寻能力成为高维搜索空间中非常有效的搜... 聚类技术广泛应用于微阵列数据分析中。在基因-样本-时间GST微阵列数据矩阵中,挖掘三维聚类成为当前的热门研究课题。3D聚类过程经常需要对多个相互冲突的目标进行优化,而且进化算法以其强大的探寻能力成为高维搜索空间中非常有效的搜索方法。本文基于多目标进化计算方法提出一个新的3D聚类算法MOE-TC,以挖掘GST数据中的3D聚类。现实微阵列数据上的实验验证结果充分说明了本文算法的有效性。 展开更多
关键词 三维微阵列 三维 多目标进化 数据挖掘
在线阅读 下载PDF
AP聚类和特征划分融合的群结构模型及跟踪算法
10
作者 王昊 宋骊平 《兵器装备工程学报》 北大核心 2025年第2期228-235,共8页
针对群目标跟踪问题中发生群合并和分裂时,传统的演化网络模型通过将目标间的马氏距离与预设的阈值进行比较实现群组划分,导致其跟踪效果因依赖于阈值选择而在性能上受限的问题,提出了一种基于近邻传播聚类和特征划分融合的群结构模型,... 针对群目标跟踪问题中发生群合并和分裂时,传统的演化网络模型通过将目标间的马氏距离与预设的阈值进行比较实现群组划分,导致其跟踪效果因依赖于阈值选择而在性能上受限的问题,提出了一种基于近邻传播聚类和特征划分融合的群结构模型,以避免上述问题并提升跟踪精度。新的群结构模型创新性地利用近邻传播聚类算法,依据目标点之间的距离和速度特征,在2个维度上对目标点进行有效划分,通过邻接矩阵表示聚类结果,并对两个邻接矩阵进行融合,构造出目标点的群组划分结构。结合高斯混合概率假设密度滤波进行群目标跟踪仿真对比实验,结果表明新的群结构模型在群组划分方面更接近群目标的真实划分,相较于传统的演化网络模型,新模型在群目标数目的估计及跟踪效果上有明显提升。所提出的群结构模型跟踪性能更好,模块化程度高并且具有更高的全局适应能力,为群目标跟踪提供了新的解决思路。 展开更多
关键词 目标跟踪 近邻传播 演化网络模型 概率假设密度滤波 邻接矩阵
在线阅读 下载PDF
基于聚类的昂贵多目标优化代理辅助进化算法 被引量:3
11
作者 白富生 陈姣伶 《运筹学学报》 CSCD 北大核心 2022年第4期31-42,共12页
针对目标函数估值昂贵的多目标优化问题,提出了基于聚类的代理辅助进化算法。在MOEA/D算法的框架下,对种群进行聚类,并通过权重向量的邻域选出种群子集,在子集上使用径向基插值函数辅助的差分进化算法得到新解,对种群进行更新。在7个DTL... 针对目标函数估值昂贵的多目标优化问题,提出了基于聚类的代理辅助进化算法。在MOEA/D算法的框架下,对种群进行聚类,并通过权重向量的邻域选出种群子集,在子集上使用径向基插值函数辅助的差分进化算法得到新解,对种群进行更新。在7个DTLZ标准测试问题上进行了数值实验,计算结果表明本文提出的算法比新近提出的多目标邻域回归优化(MONRO)算法具有优势。 展开更多
关键词 多目标优化 代理辅助进化算法 径向基函数
在线阅读 下载PDF
基于进化多目标软子空间聚类的商业银行企业客户信用风险识别 被引量:1
12
作者 刘超 谢菁 +1 位作者 李元睿 刘宸琦 《系统工程学报》 CSCD 北大核心 2022年第2期207-218,共12页
提出了一种进化多目标软子空间聚类(EMOSSC)算法,用于提升商业银行信贷审批过程中企业客户的信用风险识别和管理水平.考虑到信用数据高维、类不平衡的特征,将聚类算法中单一的聚类有效性指标转化为了一个四目标函数,并采用进化算法对该... 提出了一种进化多目标软子空间聚类(EMOSSC)算法,用于提升商业银行信贷审批过程中企业客户的信用风险识别和管理水平.考虑到信用数据高维、类不平衡的特征,将聚类算法中单一的聚类有效性指标转化为了一个四目标函数,并采用进化算法对该函数进行优化和求解.结果表明,EMOSSC算法不仅在信用风险识别准确率、稳健性以及结果显著性等方面显著优于对比算法,还能通过对指标权重大小的排序,揭示商业银行企业客户信用风险的关键影响因素,为商业银行的信用风险识别和管理提供有益参考. 展开更多
关键词 商业银行 信用风险识别 进化多目标软子空间 指标重要性评价
在线阅读 下载PDF
基于权重向量聚类的动态多目标进化算法
13
作者 李二超 程艳丽 《计算机应用》 CSCD 北大核心 2023年第7期2226-2236,共11页
实际生活中存在许多的动态多目标优化问题(DMOP)。对于此类问题,当环境发生改变时,就要求动态多目标进化算法(DMOEA)能快速和准确地跟踪新环境下的帕累托前沿(PF)或帕累托最优解集(PS)。针对现有算法的种群预测性能差的问题,提出一种基... 实际生活中存在许多的动态多目标优化问题(DMOP)。对于此类问题,当环境发生改变时,就要求动态多目标进化算法(DMOEA)能快速和准确地跟踪新环境下的帕累托前沿(PF)或帕累托最优解集(PS)。针对现有算法的种群预测性能差的问题,提出一种基于权重向量聚类预测的动态多目标进化算法(WVCP)。该算法首先在目标空间中生成均匀的权重向量,并对种群中的个体进行聚类,再根据聚类情况分析种群的分布性。其次,对聚类个体的中心点建立时间序列。对同一权重向量,针对不同的聚类情况采取相应的应对策略对个体进行补充,若相邻时刻均存在聚类中心,则采用差分模型预测新环境下的个体;若某一时刻不存在聚类中心,则用相邻权重向量聚类中心的质心作为该时刻的聚类中心,再运用差分模型预测个体。这样不仅可以有效地解决种群分布性差的问题,还可以提高预测的准确性。最后,引入个体补充策略,以充分地利用历史信息。为验证WVCP算法的性能,把它与四种代表性算法进行了仿真对比。实验结果表明,所提算法能够很好地解决DMOP。 展开更多
关键词 动态多目标进化算法 权重向量 差分模型 种群预测
在线阅读 下载PDF
区域信息驱动的多目标进化半监督模糊聚类图像分割算法 被引量:14
14
作者 赵凤 张咪咪 刘汉强 《电子与信息学报》 EI CSCD 北大核心 2019年第5期1106-1113,共8页
现有的多目标进化聚类算法应用于图像分割时,往往是在图像像素层面上进行聚类,运行时间过长,而且忽略了图像区域信息使得图像分割效果不太理想。为了提高多目标进化聚类算法的分割效果和时间效率,该文将图像区域信息与部分监督信息引入... 现有的多目标进化聚类算法应用于图像分割时,往往是在图像像素层面上进行聚类,运行时间过长,而且忽略了图像区域信息使得图像分割效果不太理想。为了提高多目标进化聚类算法的分割效果和时间效率,该文将图像区域信息与部分监督信息引入多目标进化聚类,提出图像区域信息驱动的多目标进化半监督模糊聚类图像分割算法。该算法首先利用超像素策略获得图像的区域信息,然后结合部分监督信息,设计融合区域信息和监督信息的适应度函数,接着通过多目标进化策略对多个适应度函数进行优化得到最优解集。最后构造融合区域信息与监督信息的最优解评价指标,实现从最优解集中选取一个最优解。实验结果表明:与已有多目标进化聚类算法相比,该算法不但分割效果有所提升,而且运行效率得以提高。 展开更多
关键词 图像分割 多目标进化 模糊 半监督 区域信息
在线阅读 下载PDF
基于SOM聚类和自适应算子选择的高维多目标进化算法 被引量:3
15
作者 钟沛龙 黎明 +1 位作者 何超 陈昊 《电子学报》 EI CAS CSCD 北大核心 2022年第8期1959-1974,共16页
在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系... 在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系并获得个体的相似信息,因此本文提出一种基于SOM聚类和自适应算子选择的高维多目标进化算法(Many-Objective Evolutionary Algorithm based on SOM Clustering and Adaptive Operator Selection,MaOEASCAOS).本文首先通过自组织映射网络进行种群分类,提取个体数据结构信息,并利用相似性构建邻域交配池;然后根据类内个体支配信息进行自适应算子选择,提高算法搜索和收敛性能;最后,采用环境选择策略对种群进行多样性管理以保证种群在帕累托前沿均匀分布.仿真结果表明,本文提出的基于SOM聚类和自适应算子选择(SOM Clustering and Adaptive Operator Selection,SCAOS)方法在处理高维多目标优化问题时具有较强的竞争力并且性能指标整体优于其他方法. 展开更多
关键词 高维多目标优化 自组织映射网络 自适应选择 进化算法
在线阅读 下载PDF
基于精英集的多目标差分进化聚类算法 被引量:1
16
作者 张明珠 曹杰 王斌 《计算机工程与科学》 CSCD 北大核心 2021年第1期170-179,共10页
聚类数的确定在聚类分析中是一个基本却具有挑战性的问题。一方面,最佳聚类数根据不同的评价标准、用户偏好或需求可能不一致,因此将不同聚类数的聚类结果呈现给用户作参考是有意义的。另一方面,增加聚类数虽会使聚类结果更加紧致,却会... 聚类数的确定在聚类分析中是一个基本却具有挑战性的问题。一方面,最佳聚类数根据不同的评价标准、用户偏好或需求可能不一致,因此将不同聚类数的聚类结果呈现给用户作参考是有意义的。另一方面,增加聚类数虽会使聚类结果更加紧致,却会削弱不同类之间的分离性,所以选择合适的聚类数是一个在最小化聚类数与最大化类内紧致性或类间分离性之间取得平衡的多目标优化问题。因此,在聚类数不确定的聚类问题中直接将聚类数作为一个优化目标与另一个反映类内紧致性的目标函数同时进行优化,利用新的基于精英集的多目标差分进化算法得到一个Pareto解集,集合中含有多个不同聚类数的近似最优聚类结果。实验结果验证了所提算法的可行性和有效性。 展开更多
关键词 多目标 进化算法 精英集 多目标优化 差分进化
在线阅读 下载PDF
聚类差分进化算法求解多目标工艺规划与调度集成问题 被引量:11
17
作者 杜轩 潘志成 《计算机集成制造系统》 EI CSCD 北大核心 2019年第7期1729-1738,共10页
针对多目标工艺规划与调度集成问题,以完工时间、交货总拖期和设备工作负荷为优化目标,建立了多目标非线性工艺规划集成模型,提出一种聚类差分进化算法。该算法设计了包含工艺、设备和加工顺序信息的3层编码结构,结合聚类算法、差分进... 针对多目标工艺规划与调度集成问题,以完工时间、交货总拖期和设备工作负荷为优化目标,建立了多目标非线性工艺规划集成模型,提出一种聚类差分进化算法。该算法设计了包含工艺、设备和加工顺序信息的3层编码结构,结合聚类算法、差分进化算法和遗传算法的相关操作,有效地优化工艺信息和调度方案,保持可行解的多样性,实现Pareto非支配解集快速更新。通过对Pareto非支配解集进行领域搜索,使其更加接近或到达Pareto最优解集。最后通过实例验证了算法的性能。 展开更多
关键词 多目标优化 工艺规划 调度 差分进化算法 Pareto非支配解集
在线阅读 下载PDF
一种基于聚集距离的多目标进化算法
18
作者 薛娟 郑金华 李旭勇 《计算机工程与应用》 CSCD 北大核心 2005年第36期60-62,共3页
在多目标进化算法的研究中,解群体的多样性和运行效率是最重要的两个指标。在进化算法中一般采用构造非支配集的方法来保持算法的运行效率和解集的分布性;采用聚类技术来计算和维持解群体的分布性和多样性。文章提出了用庄家法构造非支... 在多目标进化算法的研究中,解群体的多样性和运行效率是最重要的两个指标。在进化算法中一般采用构造非支配集的方法来保持算法的运行效率和解集的分布性;采用聚类技术来计算和维持解群体的分布性和多样性。文章提出了用庄家法构造非支配集和基于个体距离的聚类方法的多目标进化算法。经试验证明,该算法能够趋近到Pareto最优解,并且能保证较好的分布度。 展开更多
关键词 多目标进化算法 算法 非支配集
在线阅读 下载PDF
基于半监督的多目标进化模糊聚类算法 被引量:3
19
作者 王俊 赵凤 《计算机工程与应用》 CSCD 北大核心 2017年第22期40-44,76,共6页
为了解决传统聚类由于缺少有效指导而导致图像分割结果不理想的问题,将半监督方法引入到多目标进化模糊聚类算法中,提出了一种基于半监督的多目标进化模糊聚类。图像分割算法通过构造基于半监督的类内紧致性函数和类间分离度函数,利用... 为了解决传统聚类由于缺少有效指导而导致图像分割结果不理想的问题,将半监督方法引入到多目标进化模糊聚类算法中,提出了一种基于半监督的多目标进化模糊聚类。图像分割算法通过构造基于半监督的类内紧致性函数和类间分离度函数,利用监督信息指导聚类过程获得非支配解集。为了从非支配解集中选择一个最优解,利用监督信息构造了基于相似性度量的有效性指标。实验结果表明,提出的方法在分割准确率和视觉效果上明显优于无监督的聚类方法。 展开更多
关键词 多目标进化算法 图像分割 半监督 模糊 相似性度量
在线阅读 下载PDF
基于新距离矩阵方差的模糊聚类图像分割算法 被引量:1
20
作者 胡婕 周跃跃 《量子电子学报》 CAS CSCD 北大核心 2018年第3期286-293,共8页
传统模糊聚类算法(FCM)存在初始聚类中心不确定的问题,在图像分割中没有完全考虑到像素之间的灰度、空间信息.为解决此问题,提出了基于新距离矩阵方差的模糊聚类图像分割算法。用像素点生成一个改进的新距离矩阵,并根据此矩阵特点选取... 传统模糊聚类算法(FCM)存在初始聚类中心不确定的问题,在图像分割中没有完全考虑到像素之间的灰度、空间信息.为解决此问题,提出了基于新距离矩阵方差的模糊聚类图像分割算法。用像素点生成一个改进的新距离矩阵,并根据此矩阵特点选取初始聚类中心;结合方差确定聚类类别数,并消除部分噪声;对聚类结果进行有效性判定,确定最佳的分割结果。与SPFCM算法相比,提出算法的平均准确率提高了4.55%。实验结果表明提出方法能有效提高图像分割的平均准确率,对处理噪声有更好的效果。 展开更多
关键词 图像处理 图像分割 模糊算法 距离矩阵 方差
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部