期刊文献+
共找到276篇文章
< 1 2 14 >
每页显示 20 50 100
面向工业动态取送货问题的分解多目标进化算法
1
作者 蔡俊创 朱庆灵 +2 位作者 林秋镇 李坚强 明仲 《计算机科学》 北大核心 2025年第1期331-344,共14页
由于工业动态取送货问题具有垛口、时间窗、容量、后进先出装载等多种约束,现有的车辆路径算法大多只优化一个加权目标函数,在求解过程中难以保持解的多样性,所以容易陷入局部最优区域而停止收敛。针对上述问题,提出了一种融合高效局部... 由于工业动态取送货问题具有垛口、时间窗、容量、后进先出装载等多种约束,现有的车辆路径算法大多只优化一个加权目标函数,在求解过程中难以保持解的多样性,所以容易陷入局部最优区域而停止收敛。针对上述问题,提出了一种融合高效局部搜索策略的分解多目标进化算法。首先,该算法将工业动态取送货问题建模成多目标优化问题,进一步将其分解为多个子问题并同时进行求解。然后,利用交叉操作增强解的多样性,再使用局部搜索加快收敛速度。因此,该算法在求解该多目标优化问题时能够更好地平衡解的多样性和收敛性。最后,从种群中选择一个最好的解来完成当前时段的取送货任务。基于64个华为公司实际测试问题的仿真结果表明,该算法在求解工业动态取送货问题上的性能表现最优;同时,在20个京东物流大规模配送问题上的实验也验证了该算法良好的泛化性。 展开更多
关键词 动态取送货问题 分解方法 多目标进化算法 局部搜索 组合优化
在线阅读 下载PDF
基于镜像判断和改进父代选择的多目标进化算法
2
作者 王嘉诚 邹雨恒 +1 位作者 王珊珊 曾亮 《陕西科技大学学报》 北大核心 2025年第2期215-225,234,共12页
高维多目标进化算法在解决复杂帕累托前沿问题时,常面临收敛性和多样性难以平衡的问题.为解决这一问题,提出了一种基于镜像判断和改进父代选择的高维多目标进化算法.该算法首次结合成就标量函数和全局密度并应用在交配池中,使其在迭代... 高维多目标进化算法在解决复杂帕累托前沿问题时,常面临收敛性和多样性难以平衡的问题.为解决这一问题,提出了一种基于镜像判断和改进父代选择的高维多目标进化算法.该算法首次结合成就标量函数和全局密度并应用在交配池中,使其在迭代过程中不仅关注当前最优解,还兼顾解在整个空间的分布情况,从而实现了收敛性和多样性的统一.此外,针对算法在迭代过程中可能出现镜像的问题,本文提出了解决方案.具体来说,算法首先采用非支配排序,将临界层个体与参考向量相关联,随后判断其是否满足镜像对称准则,若满足则通过全局密度选取个体,达成“内紧外松”的目的,最大限度保证候选解的分布性,从而有效解决了选择压力不均的问题.最后将本文算法与最新的五种多目标算法在4种不同维度的测试问题上进行对比实验,并应用在两个实际案例中.实验结果表明:所提算法不仅能高效解决高维多目标优化问题,且能有效平衡收敛性和多样性. 展开更多
关键词 多目标进化算法 交配选择 聚合距离 收敛性 分布性
在线阅读 下载PDF
基于变时段设计改进多目标差分进化算法的风/光/火/储日前优化调度 被引量:2
3
作者 齐郑 徐希茜 +1 位作者 熊巍 陈艳波 《电力系统保护与控制》 EI CSCD 北大核心 2024年第16期62-71,共10页
在高比例新能源馈入的新型电力系统中,新能源出力的不确定性导致火电难以满足调度计划的精度需求,风/光/火/储系统的经济调度求解算法面临严峻挑战。为此,提出一种基于变时段设计的多目标差分进化算法。首先按各时段负荷特征构建风/光/... 在高比例新能源馈入的新型电力系统中,新能源出力的不确定性导致火电难以满足调度计划的精度需求,风/光/火/储系统的经济调度求解算法面临严峻挑战。为此,提出一种基于变时段设计的多目标差分进化算法。首先按各时段负荷特征构建风/光/火/储系统的变时段日前调度规则。进而以系统运行经济成本与污染排放量为目标,基于多目标差分进化算法求解变时段系统日前调度模型的Pareto解集。最后,用IEEE 39节点系统进行测试。结果表明在风、光、储与火电的约束条件均符合校验的情形下,相较于其他算法,该方法使计算结果更加优化,火电机组出力跟踪调度计划效果显著提高,验证了所提方法的有效性。 展开更多
关键词 风/光/火/储系统 变时段设计 日前调度计划 多目标差分进化算法 优化调度
在线阅读 下载PDF
基于多目标进化算法和SWMM的LID设施空间布局优化研究 被引量:10
4
作者 程麒铭 尹超 +3 位作者 陈垚 杨真梅 苏义鸿 刘非 《水资源保护》 EI CSCD 北大核心 2024年第1期108-116,共9页
针对传统算法无法满足低影响开发(LID)设施空间布局优化模型求解的性能要求的问题,以重庆秀山海绵城市建设区为研究区,基于MATLAB软件的platEMO4.0平台,对比分析了NSGA-Ⅱ、NSGA-Ⅲ、MOEAD、PICEA-g、MOEAPSL、CCMO与CAMOEA7种多目标进... 针对传统算法无法满足低影响开发(LID)设施空间布局优化模型求解的性能要求的问题,以重庆秀山海绵城市建设区为研究区,基于MATLAB软件的platEMO4.0平台,对比分析了NSGA-Ⅱ、NSGA-Ⅲ、MOEAD、PICEA-g、MOEAPSL、CCMO与CAMOEA7种多目标进化算法对LID设施空间布局优化问题的求解结果与性能评价指标,并提出最佳方案。结果表明:新算法大部分性能指标优于传统算法,其中CCMO算法的多样性与收敛性最佳,而MOEAPSL算法的求解速度最快,搜索能力最强,且最优解数量最多;采用CCMO和MOEAPSL算法可获得研究区不同降雨重现期下的Pareto近似前沿,即LID设施空间布局的最优解集;以径流削减为控制目标的最佳方案在降雨重现期为5~100 a时径流总量控制率为67.23%~76.70%,洪峰流量削减率为66.42%~77.86%,LID单位面积建设成本为203.90~245.23元/m 2。 展开更多
关键词 多目标进化算法 SWMM LID设施 空间布局 platEMO4.0平台
在线阅读 下载PDF
基于多目标进化和逻辑回归的供水管网水质传感器优化布置
5
作者 王宏玉 徐腾 +3 位作者 鲁春辉 谢一凡 叶逾 杨杰 《水资源保护》 北大核心 2025年第1期198-204,共7页
针对利用有限传感器监测数据无法高效识别供水管网中污染事件的问题,提出一种基于多目标进化算法(MOEA)和逻辑回归模型(LRM)优化供水管网水质传感器布置的方法——MOEA-LRM算法,并通过Anytown和Fosspoly1管网系统对该算法进行了验证。MO... 针对利用有限传感器监测数据无法高效识别供水管网中污染事件的问题,提出一种基于多目标进化算法(MOEA)和逻辑回归模型(LRM)优化供水管网水质传感器布置的方法——MOEA-LRM算法,并通过Anytown和Fosspoly1管网系统对该算法进行了验证。MOEA-LRM算法以最小化传感器数量、平均和最坏情况冲击风险为主要目标构建MOEA算法的数学模型以实现Pareto均衡,从而降低对管网系统带来的风险;在此基础上,MOEA-LRM算法再利用LRM筛选出传感器的最优布局,进一步提高管网全域内污染源识别的准确性。验证结果表明,该方法确定的最佳传感器布置方案能够较准确地保证管网全域内识别污染源的准确性,降低外源性突发水污染事件对用户的影响。 展开更多
关键词 供水管网 多目标进化算法 逻辑回归模型 水质传感器优化布置
在线阅读 下载PDF
基于多目标进化算法的防空导弹武器目标分配 被引量:1
6
作者 孙昕 邢立宁 +3 位作者 王锐 王凌 石建迈 罗天羽 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1298-1308,共11页
有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,... 有效的武器目标分配(weapon-target assignment,WTA)方法对减少作战损失,提高防御效果具有重要意义。针对防空资源分配问题建立合理的数学模型,以最大化目标毁伤效能和最小化雷达资源消耗为优化目标,同时考虑雷达通道数上限等多个约束,在基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)基础上进行改进,种群进化过程中自适应调整交叉与变异的概率以提高个体的质量,最终得到一组可供决策者使用的最优解集。实验结果表明:与其他多目标进化算法相比,该算法能得到适应度更高且分布性良好的结果,能够为防空导弹武器目标分配问题提供可行方案。 展开更多
关键词 武器目标分配 多目标进化算法 自适应参数 防空导弹
在线阅读 下载PDF
一种采用混合策略的大规模多目标进化算法 被引量:6
7
作者 谢承旺 潘嘉敏 +2 位作者 郭华 王冬梅 付世炜 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期69-89,共21页
现实中存在大量的大规模多目标优化问题,这些问题所固有的目标函数间冲突性、巨大的搜索空间以及决策变量可能存在的交互等特征对传统的多目标进化算法构成了巨大的挑战.研究者根据此类问题的特点基于不同的视角提出了多种大规模多目标... 现实中存在大量的大规模多目标优化问题,这些问题所固有的目标函数间冲突性、巨大的搜索空间以及决策变量可能存在的交互等特征对传统的多目标进化算法构成了巨大的挑战.研究者根据此类问题的特点基于不同的视角提出了多种大规模多目标进化算法,但它们在解题的质量和效率方面尚存较大的提升空间.基于此,提出一种采用混合策略的大规模多目标进化算法LSMOEA/HS.该算法提出的一种黄金分层分组方法将大规模决策变量分成收敛性组和多样性组,然后对收敛性变量组执行基于变量组的相关性检测操作,将收敛性变量组划分成若干更小规模的子组,最后算法采用不同的优化策略分别优化收敛性变量组和多样性变量组以获得最终的解题结果.为验证LSMOEA/HS的有效性,将其与五种新近提出的高效的大规模多目标进化算法一同在决策变量维度为200、500、1000、2000和5000的2-目标和3-目标的LSMOP系列测试实例上进行IGD和HV性能测试,实验结果表明LSMOEA/HS具有显著较优的收敛性和多样性.由此表明,LSMOEA/HS是一种颇具前景的大规模多目标进化算法. 展开更多
关键词 大规模多目标优化问题 变量分组 进化算法 收敛性 多样性 大规模多目标进化算法
在线阅读 下载PDF
基于改进双档案多目标进化算法的柔性作业车间批量流混排调度 被引量:1
8
作者 黄洋鹏 李玲玲 李丽 《计算机应用研究》 CSCD 北大核心 2024年第6期1669-1678,共10页
针对柔性作业车间批量流调度问题,基于快速换模技术,考虑可变子批划分柔性、子批混排加工柔性、自动换模柔性和物料运输柔性,建立以最小化完工时间和加工子批总数为目标的混排调度优化模型,并提出一种改进双档案多目标进化算法以优化目... 针对柔性作业车间批量流调度问题,基于快速换模技术,考虑可变子批划分柔性、子批混排加工柔性、自动换模柔性和物料运输柔性,建立以最小化完工时间和加工子批总数为目标的混排调度优化模型,并提出一种改进双档案多目标进化算法以优化目标函数。基于进化算法框架,设计了基于超体积指标和基于改进帕累托支配的双档案筛选机制,以平衡种群的收敛性和多样性;针对批量流混排调度问题特征,在解码阶段提出正/逆解码和子批拆分左移策略,在邻域探索和全局搜索阶段分别设计子批划分和混排调度的自适应进化算子,以提高算法的全局搜索与局部搜索能力。基于不同规模算例,测试了提出算法与经典多目标算法的性能。实验结果表明,该算法在收敛性与多样性上具有明显优势。 展开更多
关键词 作业车间 批量流调度 快速换模 多目标进化算法 解码策略
在线阅读 下载PDF
多目标差分进化算法改进与电工钢片磁致伸缩模型参数辨识 被引量:2
9
作者 陈昊 李琳 +1 位作者 王亚琦 刘洋 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2047-2057,I0033,共12页
准确且高效地辨识电工钢片磁致伸缩模型参数是模型在变压器铁心振动分析中的应用前提。针对现有单目标优化算法不能兼顾参数辨识精度和速度的问题,该文基于改进Jiles-Atherton-Sablik和Energetic模型相结合的磁致伸缩模型,将该模型的参... 准确且高效地辨识电工钢片磁致伸缩模型参数是模型在变压器铁心振动分析中的应用前提。针对现有单目标优化算法不能兼顾参数辨识精度和速度的问题,该文基于改进Jiles-Atherton-Sablik和Energetic模型相结合的磁致伸缩模型,将该模型的参数辨识转换为多目标优化问题。以磁滞回线和磁致伸缩曲线的均方根误差作为待优化的2个目标,建立参数辨识的多目标优化数学模型。基于该模型,从控制参数自适应技术、变异算子改进策略以及选择算子改进策略3个方面对多目标差分进化算法进行改进,从而提出一种采用改进多目标差分进化算法的磁致伸缩模型参数辨识方法。通过与现有方法对比,该文方法的磁滞回线求解精度提升17.84%,磁致伸缩曲线求解精度提升13.60%,辨识速度提升41.57%。 展开更多
关键词 电工钢片 磁致伸缩模型 参数辨识 多目标差分进化算法 Jiles-Atherton-Sablik模型 Energetic磁滞模型
在线阅读 下载PDF
基于决策变量时域变化特征分类的动态多目标进化算法
10
作者 闵芬 董文波 丁炜超 《自动化学报》 EI CAS CSCD 北大核心 2024年第11期2154-2176,共23页
动态多目标优化问题(Dynamic multi-objective optimization problems,DMOPs)广泛存在于科学研究和工程实践中,其主要考虑在动态环境下同时联合优化多个冲突目标.现有方法往往关注于目标空间的时域特征,忽视了对单个决策变量变化特性的... 动态多目标优化问题(Dynamic multi-objective optimization problems,DMOPs)广泛存在于科学研究和工程实践中,其主要考虑在动态环境下同时联合优化多个冲突目标.现有方法往往关注于目标空间的时域特征,忽视了对单个决策变量变化特性的探索与利用,从而在处理更复杂的问题时不能有效引导种群收敛.为此,提出一种基于决策变量时域变化特征分类的动态多目标进化算法(Dynamic multi-objective evolutionary algorithm based on classification of decision variable temporal change characteristics,FT-DMOEA).所提算法在环境动态变化时,首先基于决策变量时域变化特征分类方法将当前时刻决策变量划分为线性变化和非线性变化两种类型;然后分别采用拉格朗日外插法和傅里叶预测模型对线性和非线性变化决策变量进行下一时刻的初始化操作.为了更有效地识别非线性决策变量变化模式,傅里叶预测模型通过傅里叶变换将历史种群数据从时域转换到频域,在分析周期性频率特征后,使用自回归模型进行频谱估计后再反变换至时域.在多个基准数据集上和其他算法进行对比,实验结果表明,所提算法是有效的. 展开更多
关键词 傅里叶变换 动态多目标优化问题 决策变量分类 动态多目标进化算法 预测策略
在线阅读 下载PDF
基于增强生长型神经气的高维多目标进化算法
11
作者 薛明 王鹏 童向荣 《数据采集与处理》 CSCD 北大核心 2024年第3期634-648,共15页
随着对高维多目标优化问题的深入研究,带有不规则Pareto前沿的高维多目标优化问题因其复杂的Pareto前沿分布,给现有方法的求解带来了挑战。针对上述问题,提出一种基于增强生长型神经气的高维多目标进化算法,该算法综合生长型神经气网络... 随着对高维多目标优化问题的深入研究,带有不规则Pareto前沿的高维多目标优化问题因其复杂的Pareto前沿分布,给现有方法的求解带来了挑战。针对上述问题,提出一种基于增强生长型神经气的高维多目标进化算法,该算法综合生长型神经气网络的学习特性与二元质量指标的优化特性来增强种群在不规则Pareto前沿的收敛压力。首先,设计了一种增强的生长型神经气网络,该网络利用Pareto最优前沿的拓扑信息指导种群向Pareto最优前沿方向收敛。然后,提出了一种联合度量指标以配合Pareto支配信息来综合评价个体的收敛性。最后,提出一种基于自适应参考点的环境选择增强种群在高维目标空间的多样性。为验证所提算法的性能,在DTLZ和WFG基准问题集中的44个不规则高维多目标优化问题与5种先进的高维多目标进化算法进行对比实验。实验结果表明,所提出的基于增强生长型神经气的高维多目标进化算法的整体性能优于对比算法。 展开更多
关键词 多目标优化 多目标进化算法 度量指标 不规则Pareto前沿 生长型神经气
在线阅读 下载PDF
采用基于分解的多目标进化算法的电力环境经济调度 被引量:31
12
作者 朱永胜 王杰 +1 位作者 瞿博阳 P.N.Suganthan 《电网技术》 EI CSCD 北大核心 2014年第6期1577-1584,共8页
为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D... 为了准确、快速地求解电力系统环境经济调度(environmental economic dispatching,EED)问题,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)应用于电力调度领域,提出了基于MOEA/D的多目标环境经济调度算法。该算法首先采用Tchebycheff法将整个EED Pareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用差分进化同时求解这些子问题,并在算法中加入约束处理及归一化操作,以获得最优的带约束EED问题的调度方案。最后,应用模糊集理论为决策者提供最优折中解。对IEEE 30节点测试系统进行仿真计算,并与其它智能优化算法的调度方案对比。结果表明,该算法有效可行,且具有很好的收敛速度和求解精度。 展开更多
关键词 环境经济调度 多目标进化算法 MOEA D PARETO最优前沿
在线阅读 下载PDF
多目标进化算法及其在电力环境经济调度中的应用综述 被引量:18
13
作者 肖俊明 周谦 +1 位作者 瞿博阳 韦学辉 《郑州大学学报(工学版)》 CAS 北大核心 2016年第2期1-9,共9页
电力系统能源供应对现代社会至关重要,而电力系统环境经济调度问题的科学、有效解决是实现能源供应的保障.多目标进化算法在求解电力系统环境经济调度问题方面具有独特的优势.本文按时间顺序首先对多目标进化算法做了介绍,其次对多目标... 电力系统能源供应对现代社会至关重要,而电力系统环境经济调度问题的科学、有效解决是实现能源供应的保障.多目标进化算法在求解电力系统环境经济调度问题方面具有独特的优势.本文按时间顺序首先对多目标进化算法做了介绍,其次对多目标进化算法在电力系统环境经济调度问题中的应用进行了讨论,总结了近年来科学工作者的研究内容,并对此领域以后可能的发展方向进行了展望. 展开更多
关键词 多目标优化 多目标进化算法 电力系统运行调度 经济环境调度
在线阅读 下载PDF
一种基于Hypervolume指标的自适应邻域多目标进化算法 被引量:12
14
作者 郑金华 李珂 +1 位作者 李密青 文诗华 《计算机研究与发展》 EI CSCD 北大核心 2012年第2期312-326,共15页
通过定义反映个体之间邻近程度的指标(个体的树邻域包含关系),在考虑个体间支配关系的基础上,利用个体与其周边个体的树邻域密度进行适应度赋值;提出了一种2,3维情况下个体独立支配区域的Hypervolume指标的计算方法,该方法用于评价个体... 通过定义反映个体之间邻近程度的指标(个体的树邻域包含关系),在考虑个体间支配关系的基础上,利用个体与其周边个体的树邻域密度进行适应度赋值;提出了一种2,3维情况下个体独立支配区域的Hypervolume指标的计算方法,该方法用于评价个体对群体的贡献时只需要1次计算(同类方法需要2次计算);当外部种群中非支配个体数目超过规定规模时,根据个体独立支配区域的Hypervolume指标的大小对其进行修剪;在此基础上,提出了一种基于Hypervolume指标的自适应邻域多目标进化算法ANMOEA?HI.对比实验结果表明,ANMOEA?HI在保证了解集收敛性的同时亦拥有良好的分布性. 展开更多
关键词 最小生成树 树邻域密度 适应度赋值 Hypervolume指标 种群维护 多目标进化算法
在线阅读 下载PDF
一种快速的基于占优树的多目标进化算法 被引量:14
15
作者 石川 李清勇 史忠植 《软件学报》 EI CSCD 北大核心 2007年第3期505-516,共12页
为了解决多目标进化算法中适应值指派(fitness assignment)的耗时问题,提出了一种新颖的适应值指派方法——占优树.占优树保存了个体之间的必要信息,暗含了个体的密度信息,而且显著减少了个体之间的比较.此外,基于占优树的淘汰策略没有... 为了解决多目标进化算法中适应值指派(fitness assignment)的耗时问题,提出了一种新颖的适应值指派方法——占优树.占优树保存了个体之间的必要信息,暗含了个体的密度信息,而且显著减少了个体之间的比较.此外,基于占优树的淘汰策略没有花费额外的代价就保存了种群多样性.在此基础上,提出了一种新的基于占优树的多目标进化算法.通过6个测试问题和3个方面的测试标准,新算法在接近真实的最优前沿和保持种群的多样性方面,与SPEA2和NSGA-II性能相当,但速度要比它们快得多. 展开更多
关键词 多目标进化算法 进化算法 占优树 淘汰策略
在线阅读 下载PDF
多目标协调进化算法研究 被引量:35
16
作者 崔逊学 李淼 方廷健 《计算机学报》 EI CSCD 北大核心 2001年第9期979-984,共6页
进化算法适合解决多目标优化问题 ,但难以产生高维优化问题的最优解 .文中针对此问题提出了一种求解高维多目标优化问题的新进化方法 ,即多目标协调进化算法 ,主要特点是进化群体按协调模型使用偏好信息进行偏好排序 ,而不是基于 Paret... 进化算法适合解决多目标优化问题 ,但难以产生高维优化问题的最优解 .文中针对此问题提出了一种求解高维多目标优化问题的新进化方法 ,即多目标协调进化算法 ,主要特点是进化群体按协调模型使用偏好信息进行偏好排序 ,而不是基于 Pareto优于关系进行个体排序 .实验结果表明 ,所提出的算法是可行而有效的 ,且能在有限进化代数内收敛 . 展开更多
关键词 多目标协调进化算法 全局优化算法 数学模型
在线阅读 下载PDF
应用档案精英学习和反向学习的多目标进化算法 被引量:22
17
作者 谢承旺 王志杰 夏学文 《计算机学报》 EI CSCD 北大核心 2017年第3期757-772,共16页
现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning ... 现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning and Opposition-based Learning,AOL-MOEA)以解决困难的多目标优化问题.AOLMOEA算法利用档案精英学习算子增强算法全局搜索能力,促进算法较快收敛;运用动态一般反向学习机制代替变异算子以增加种群逃逸局部极值的机会;使用3-点最短路径方法维持解群的多样性.AOL-MOEA算法与另外5种代表性多目标优化算法在12个基准多目标测试函数上进行性能比较,实验结果表明:AOL-MOEA算法在收敛性、多样性和稳定性等方面均优于或部分优于其他的对比算法. 展开更多
关键词 档案精英学习 动态一般反向学习 3-点最短路径 多目标进化算法
在线阅读 下载PDF
一种基于最小生成树的多目标进化算法 被引量:14
18
作者 李密青 郑金华 罗彪 《计算机研究与发展》 EI CSCD 北大核心 2009年第5期803-813,共11页
怎样保证朝Pareto最优解的方向搜索和如何获得均匀分布且范围广泛的非支配解是多目标进化算法(MOEA)设计时的两个关键问题,它们很大程度上取决于适应度赋值和外部种群维护这两个重要部分.提出了一种基于最小生成树的多目标进化算法(MST_... 怎样保证朝Pareto最优解的方向搜索和如何获得均匀分布且范围广泛的非支配解是多目标进化算法(MOEA)设计时的两个关键问题,它们很大程度上取决于适应度赋值和外部种群维护这两个重要部分.提出了一种基于最小生成树的多目标进化算法(MST_MOEA).在考虑了个体间支配关系的基础上,利用个体与非支配集的距离和不同等级个体的树聚集密度来对适应度赋值;在外部种群的非支配解个数超过规定的种群规模时,用树的度数和树聚集密度对其进行修剪.将其应用于不同维数下9个测试函数,并与NSGA-II,SPEA2进行对比,结果证实了算法良好的收敛性和分布性. 展开更多
关键词 树聚集密度 适应度赋值 种群维护 最小生成树 多目标进化算法
在线阅读 下载PDF
一种基于邻域的多目标进化算法 被引量:5
19
作者 李密青 郑金华 +2 位作者 罗彪 伍军 文诗华 《计算机应用》 CSCD 北大核心 2008年第6期1570-1574,共5页
种群维护是多目标进化算法的重要组成部分。针对维护方法和运行效率的矛盾,提出一种基于邻域的多目标进化算法(NMOEA)。定义了一个反映个体之间邻近程度的指标———邻域包含关系,利用此关系对个体进行分布适应度分级的赋值,并用动态方... 种群维护是多目标进化算法的重要组成部分。针对维护方法和运行效率的矛盾,提出一种基于邻域的多目标进化算法(NMOEA)。定义了一个反映个体之间邻近程度的指标———邻域包含关系,利用此关系对个体进行分布适应度分级的赋值,并用动态方法快速地对种群进行维护。通过7个测试问题和3个方面的测试标准,结果表明新算法在较快速地接近真实的最优面的同时,拥有良好的分布性。 展开更多
关键词 多目标进化算法 多目标优化问题 种群维护 分布适应度 邻域
在线阅读 下载PDF
基于改进的多目标进化算法的飞行控制系统优化 被引量:6
20
作者 聂瑞 章卫国 +1 位作者 李广文 刘小雄 《计算机应用研究》 CSCD 北大核心 2011年第5期1703-1706,共4页
针对在传统飞行控制系统控制器参数整定问题中单目标优化不能同时满足多个控制指标要求的缺点,提出了一种基于改进的NSGA-II算法的多目标进化算法。在改进的NSGA-II算法中,提出了改进的精英保留策略增强算法收敛性;同时,使用改进的自适... 针对在传统飞行控制系统控制器参数整定问题中单目标优化不能同时满足多个控制指标要求的缺点,提出了一种基于改进的NSGA-II算法的多目标进化算法。在改进的NSGA-II算法中,提出了改进的精英保留策略增强算法收敛性;同时,使用改进的自适应模拟二进制(ASBX)算子提高算法效率,提出了使用改进的基于混沌序列的变异算子避免算法陷入局部最优解,以提高算法搜索精度。将改进的算法应用于飞机飞行控制系统设计中。仿真结果表明,该进化算法能够快速有效地进行飞行控制系统参数整定。 展开更多
关键词 飞行控制系统 多目标进化算法 NSGA-II 精英保留策略 混沌序列
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部