期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fe/N-doped mesoporous carbons derived from soybeans: A highly efficient and low-cost non-precious metal catalyst for ORR 被引量:2
1
作者 WU Qiu-mei DENG Da-kuan +3 位作者 HE Yi-lun ZHOU Zhong-cheng SANG Shang-bin ZHOU Zhi-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期344-355,共12页
Oxygen reduction reaction(ORR)plays a crucial role in many energy storage and conversion devices.Currently,the development of inexpensive and high-performance carbon-based non-precious-metal ORR catalysts in alkaline ... Oxygen reduction reaction(ORR)plays a crucial role in many energy storage and conversion devices.Currently,the development of inexpensive and high-performance carbon-based non-precious-metal ORR catalysts in alkaline media still gains a wide attention.In this paper,the mesoporous Fe-N/C catalysts were synthesized through SiO2-mediated templating method using biomass soybeans as the nitrogen and carbon sources.The SiO2 templates create a simultaneous optimization of both the surface functionalities and porous structures of Fe-N/C catalysts.Detailed investigations indicate that the Fe-N/C3 catalyst prepared with the mass ratio of SiO2 to soybean being 3:4 exhibits brilliant electrocatalytic performance,excellent long-term stability and methanol tolerance for the ORR,with the onset potential and the half-wave potential of the ORR being about 0.890 V and 0.783 V(vs RHE),respectively.Meanwhile,the desired 4-electron transfer pathway of the ORR on the catalysts can be observed.It is significantly proposed that the high BET specific surface area and the appropriate pore-size,as well as the high pyridinic-N and total nitrogen loadings may play key roles in enhancing the ORR performance for the Fe-N/C3 catalyst.These results suggest a feasible route based on the economical and sustainable soybean biomass to develop inexpensive and highly efficient non-precious metal electrochemical catalysts for the ORR. 展开更多
关键词 biomass oxygen reduction reaction ELECTRO-CATALYST nitrogen-doped carbon
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部