期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
运用近邻传播聚类分析进行SELDI-TOF蛋白质谱特征选择
被引量:
5
1
作者
杨合龙
祝磊
+3 位作者
韩斌
厉力华
郑智国
孟旭莉
《中国生物医学工程学报》
CAS
CSCD
北大核心
2013年第1期14-20,共7页
针对如何有效分析高通量SELDI-TOF质谱数据以及筛选与肿瘤相关的蛋白质位点,提出一种基于近邻传播聚类分析的特征选择方法。首先利用t-test对SELDI数据进行初筛,然后利用近邻传播聚类分析以及零空间LDA对数据进行降维和去相关处理,最后...
针对如何有效分析高通量SELDI-TOF质谱数据以及筛选与肿瘤相关的蛋白质位点,提出一种基于近邻传播聚类分析的特征选择方法。首先利用t-test对SELDI数据进行初筛,然后利用近邻传播聚类分析以及零空间LDA对数据进行降维和去相关处理,最后采用SVM-RFE进行特征选择,筛选出与肿瘤判别相关的蛋白质位点。利用SVM、KNN、NB及J4.8等4个分类器,估算算法的分类性能。结果表明,在卵巢癌公共数据集OC-WCX2a和OC-WCX2b以及浙江省肿瘤医院乳腺癌数据集BC-WCX2a上显示该算法,在上述3个数据集中分类率分别达到96.43%、99.66%、90.88%,敏感性分别达到97.00%、100%、96.17%,特异性分别达到95.85%、99.08%、81.92%,并分别挑选出与肿瘤判别相关的10个蛋白位点。所提出的算法能够获得较好的分类率,有效提取出具有较好判别效果的蛋白质谱位点,有助于癌症的辅助诊断。
展开更多
关键词
蛋白质质谱
近邻传播聚类分析
特征选择
生物标志物
在线阅读
下载PDF
职称材料
题名
运用近邻传播聚类分析进行SELDI-TOF蛋白质谱特征选择
被引量:
5
1
作者
杨合龙
祝磊
韩斌
厉力华
郑智国
孟旭莉
机构
杭州电子科技大学生命信息与仪器工程学院
浙江省肿瘤研究所
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2013年第1期14-20,共7页
基金
国家自然科学基金(60801054
60801055)
国家杰出青年基金(60788101)
文摘
针对如何有效分析高通量SELDI-TOF质谱数据以及筛选与肿瘤相关的蛋白质位点,提出一种基于近邻传播聚类分析的特征选择方法。首先利用t-test对SELDI数据进行初筛,然后利用近邻传播聚类分析以及零空间LDA对数据进行降维和去相关处理,最后采用SVM-RFE进行特征选择,筛选出与肿瘤判别相关的蛋白质位点。利用SVM、KNN、NB及J4.8等4个分类器,估算算法的分类性能。结果表明,在卵巢癌公共数据集OC-WCX2a和OC-WCX2b以及浙江省肿瘤医院乳腺癌数据集BC-WCX2a上显示该算法,在上述3个数据集中分类率分别达到96.43%、99.66%、90.88%,敏感性分别达到97.00%、100%、96.17%,特异性分别达到95.85%、99.08%、81.92%,并分别挑选出与肿瘤判别相关的10个蛋白位点。所提出的算法能够获得较好的分类率,有效提取出具有较好判别效果的蛋白质谱位点,有助于癌症的辅助诊断。
关键词
蛋白质质谱
近邻传播聚类分析
特征选择
生物标志物
Keywords
mass spectrometry
affinity propagation clustering
feature selection
biomarker
分类号
R318 [医药卫生—生物医学工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
运用近邻传播聚类分析进行SELDI-TOF蛋白质谱特征选择
杨合龙
祝磊
韩斌
厉力华
郑智国
孟旭莉
《中国生物医学工程学报》
CAS
CSCD
北大核心
2013
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部