期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据聚类的CSI反馈Transformer网络简化实现方法
1
作者 还冬锐 张逸帆 姜明 《数据采集与处理》 北大核心 2025年第2期431-445,共15页
为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能... 为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能传输技术。为此,本文提出了一种基于数据聚类的CSI反馈Transformer网络的简化方法,采用基于聚类的近似矩阵乘法(Approximate matrix multiplication,AMM)技术,以降低反馈过程中Transformer网络的计算复杂度。本文主要对Transformer网络的全连接层计算(等效为矩阵乘法),应用乘积量化(Product quantization,PQ)和MADDNESS等简化方法,分析了它们对计算复杂度和系统性能的影响,并针对神经网络数据的特点进行了算法优化。仿真结果表明,在适当的参数调整下,基于MADDNESS方法的CSI反馈网络性能接近精确矩阵乘法方法,同时可大幅降低计算复杂度。 展开更多
关键词 信道状态信息反馈 多输入多输出 神经网络 近似矩阵乘法 聚类计算
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部