期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度学习的散列检索技术研究进展 被引量:1
1
作者 袁明汶 钱江波 +1 位作者 董一鸿 陈华辉 《电信科学》 2018年第10期104-115,共12页
大数据时代,数据呈现维度高、数据量大和增长快等特点。面对大量的复杂数据,如何高效地检索相似近邻数据是近似最近邻查询的研究热点。散列技术通过将数据映射为二进制码的方式,能够显著加快相似性计算,并在检索过程中节省存储和通信开... 大数据时代,数据呈现维度高、数据量大和增长快等特点。面对大量的复杂数据,如何高效地检索相似近邻数据是近似最近邻查询的研究热点。散列技术通过将数据映射为二进制码的方式,能够显著加快相似性计算,并在检索过程中节省存储和通信开销。近年来深度学习在提取数据特征方面表现出速度快、精度高等优异的性能,使得基于深度学习的散列检索技术得到越来越广泛的运用。总结了深度学习散列的主要方法和前沿进展,并对未来的研究方向展开简要探讨。 展开更多
关键词 大数据 近似最近邻查询 深度学习散列
在线阅读 下载PDF
APPROXIMATE QUERY AND CALCULATION OF RNN_k BASED ON VORONOI CELL 被引量:1
2
作者 郝忠孝 李博涵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期154-161,共8页
Reverse k nearest neighbor (RNNk) is a generalization of the reverse nearest neighbor problem and receives increasing attention recently in the spatial data index and query. RNNk query is to retrieve all the data po... Reverse k nearest neighbor (RNNk) is a generalization of the reverse nearest neighbor problem and receives increasing attention recently in the spatial data index and query. RNNk query is to retrieve all the data points which use a query point as one of their k nearest neighbors. To answer the RNNk of queries efficiently, the properties of the Voronoi cell and the space-dividing regions are applied. The RNNk of the given point can be found without computing its nearest neighbors every time by using the rank Voronoi cell. With the elementary RNNk query result, the candidate data points of reverse nearest neighbors can he further limited by the approximation with sweepline and the partial extension of query region Q. The approximate minimum average distance (AMAD) can be calculated by the approximate RNNk without the restriction of k. Experimental results indicate the efficiency and the effectiveness of the algorithm and the approximate method in three varied data distribution spaces. The approximate query and the calculation method with the high precision and the accurate recall are obtained by filtrating data and pruning the search space. 展开更多
关键词 computational geometry approximation query filtrating reverse k nearest neighbor (RNNk) Voronoi cell
在线阅读 下载PDF
深度学习哈希研究与发展 被引量:3
3
作者 孙瑶 《数据通信》 2018年第2期49-54,共6页
在很多实际应用中,如何查找到最相似的近邻数据是计算机学科中的一个基础研究内容,而由于数据集规模的迅速增长,直接比较查询的计算复杂度极高,所需要的存储空间也极大,因此基于哈希技术的近似最近邻查询成为了一个研究热点。哈希学习... 在很多实际应用中,如何查找到最相似的近邻数据是计算机学科中的一个基础研究内容,而由于数据集规模的迅速增长,直接比较查询的计算复杂度极高,所需要的存储空间也极大,因此基于哈希技术的近似最近邻查询成为了一个研究热点。哈希学习技术通过将数据映射成二进制编码的形式,显著减少了数据的存储开销以及计算复杂度,有效提高了大规模数据集下的检索效率。近年来,由于深度学习在特征提取上优异的表现,基于深度学习的哈希方法在数据检索中取得了显著的进展。本文分析了深度学习哈希的主要方法和研究进展,对深度学习哈希进行了介绍,并提出了其未来的研究方向。 展开更多
关键词 大规模数据检索 近似最近邻查询 深度学习哈希
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部