针对化学工业过程中存在的强非线性和时变特性等问题,提出了一种基于牛顿-拉夫逊优化算法(Newton-Raphson based optimizer,NRBO)驱动的堆叠长短期记忆网络(stacked long short-term memory network,SLSTM)的运行状态评价方法。该方法...针对化学工业过程中存在的强非线性和时变特性等问题,提出了一种基于牛顿-拉夫逊优化算法(Newton-Raphson based optimizer,NRBO)驱动的堆叠长短期记忆网络(stacked long short-term memory network,SLSTM)的运行状态评价方法。该方法通过堆叠多层LSTM网络并引入Dropout层,增强了时序数据的表达能力。同时利用NRBO算法的二阶导数优化特性,有效提高了模型的收敛速度和分类精度,避免了传统LSTM评价方法在高维参数空间中易陷入局部最优的问题。在Tennessee Eastman(TE)过程的实验验证中,所提方法的预测准确率达到了99.31%,显著优于其他几种对比方法。针对非优状态,提出了基于主元分析和组套索正则化贡献(principal component analysis and group lasso regularization contribution,PCA-GLC)相结合的非优因素识别方法,该方法能够有效识别关键变量,减少误判和干扰,为工业过程的实时调整提供准确依据。在TE过程的实验验证中,所提方法相对于基于PCA的图贡献法,对关键变量的识别更加准确,并且降低了其他变量对结果的干扰。展开更多
运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互...运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互信息将传统随机森林中的决策树进行分组,并选出每组中最优的决策树组成新的随机森林.同时为了强化评价精度高的决策树和弱化评价精度低的决策树对最终评价结果的影响,使用加权投票机制取代传统众数投票方法,最终构成一种基于互信息的加权随机森林算法(Mutual information weighted random forest,MIWRF).对于在线评价,本文通过计算在线数据处于各个等级的概率,并且结合提出的在线评价策略,判定当前样本运行状态等级.为了验证所提算法的有效性,将所提方法应用于湿法冶金浸出过程,实验结果表明,相对于传统随机森林算法,MIWRF降低了模型的复杂度,同时提高了运行状态评价精度.展开更多
文摘针对化学工业过程中存在的强非线性和时变特性等问题,提出了一种基于牛顿-拉夫逊优化算法(Newton-Raphson based optimizer,NRBO)驱动的堆叠长短期记忆网络(stacked long short-term memory network,SLSTM)的运行状态评价方法。该方法通过堆叠多层LSTM网络并引入Dropout层,增强了时序数据的表达能力。同时利用NRBO算法的二阶导数优化特性,有效提高了模型的收敛速度和分类精度,避免了传统LSTM评价方法在高维参数空间中易陷入局部最优的问题。在Tennessee Eastman(TE)过程的实验验证中,所提方法的预测准确率达到了99.31%,显著优于其他几种对比方法。针对非优状态,提出了基于主元分析和组套索正则化贡献(principal component analysis and group lasso regularization contribution,PCA-GLC)相结合的非优因素识别方法,该方法能够有效识别关键变量,减少误判和干扰,为工业过程的实时调整提供准确依据。在TE过程的实验验证中,所提方法相对于基于PCA的图贡献法,对关键变量的识别更加准确,并且降低了其他变量对结果的干扰。
文摘运行状态评价是指在过程正常生产的前提下,进一步判断生产过程运行状态的优劣.针对复杂工业过程定量信息与定性信息共存的情况,本文提出了一种基于随机森林的工业过程运行状态评价方法.针对随机森林中决策树信息存在冗余的问题,基于互信息将传统随机森林中的决策树进行分组,并选出每组中最优的决策树组成新的随机森林.同时为了强化评价精度高的决策树和弱化评价精度低的决策树对最终评价结果的影响,使用加权投票机制取代传统众数投票方法,最终构成一种基于互信息的加权随机森林算法(Mutual information weighted random forest,MIWRF).对于在线评价,本文通过计算在线数据处于各个等级的概率,并且结合提出的在线评价策略,判定当前样本运行状态等级.为了验证所提算法的有效性,将所提方法应用于湿法冶金浸出过程,实验结果表明,相对于传统随机森林算法,MIWRF降低了模型的复杂度,同时提高了运行状态评价精度.