植物形态伴随着植物生长过程而发生变化,植物的三维重建对研究植物形态对植物生物量估测、植物病害虫害、基因型表达等有着很重要的意义。目前三维重建方法重建出的三维点云多包含植物的形态、颜色等特征,无法反应植物营养状况(如叶绿...植物形态伴随着植物生长过程而发生变化,植物的三维重建对研究植物形态对植物生物量估测、植物病害虫害、基因型表达等有着很重要的意义。目前三维重建方法重建出的三维点云多包含植物的形态、颜色等特征,无法反应植物营养状况(如叶绿素含量)、病虫害胁迫等原因造成有机质空间三维分布改变,同时以往手段都需要专门仪器,携带和作业都受到很大限制。多光谱图像能够反应有机质含量等化学值的分布,在近地面遥感、农产品质量无损检测等发面取得了广泛的应用。该文通过采集31张4叶龄油菜的多光谱图像,使用运动恢复结构算法(structure from motion)方法对其进行空间三维重建,得到油菜的三维点云,并对点云中噪声点进行滤除。以控制点和控制长度对所得模型进行评价,得到长度最大偏差在0.1023 cm,RMSE=0.052599,证明该方法重建所得模型具有较好的空间均匀性与准确性,最后计算NDVI指数空间分布。证明所得模型对将来研究植物营养与病虫害胁迫空间分布有着重要意义。展开更多
针对传统的玉米植株性状测量方法存在主观性强、劳动强度大、有损伤等问题,提出了基于运动恢复结构(Structure from motion,SfM)的户外玉米植株三维重建方法,并提取了株高、单株最小包围盒体积、茎粗、叶面积、叶片数、叶夹角等11个性...针对传统的玉米植株性状测量方法存在主观性强、劳动强度大、有损伤等问题,提出了基于运动恢复结构(Structure from motion,SfM)的户外玉米植株三维重建方法,并提取了株高、单株最小包围盒体积、茎粗、叶面积、叶片数、叶夹角等11个性状参数。采用前期研制的小车,在户外采集不同视角下的玉米植株图像(采集间距为5~6 cm),基于SfM算法获取玉米植株三维点云;运用直通滤波、圆柱拟合和条件欧氏聚类算法自动分割单株、茎秆和叶片等点云数据,基于距离最值遍历、三角面片化等算法实现株高、茎粗、叶面积等11个性状的准确、无损测量。结果表明,与人工测量值相比,测得的株高、茎粗和叶面积的平均绝对百分比误差分别为3.163%、4.760%和19.102%,均方根误差分别为3.557 cm、1.540 mm、48.163 cm2,决定系数分别为0.970、0.842、0.901。研究表明,本文方法适用于作物表型户外测量,为表型研究提供了一种新的作物表型户外测量方法,同时还证明,株高和单株最小包围盒体积可以显著区分低地上部生物量玉米植株和高地上部生物量玉米植株。展开更多
运动推断结构(Structure From Motion,SFM)是一种从图像或视频序列生成三维点云模型的技术.由于SFM能够产生与输入图像或视频场景具有较高几何一致性的三维模型,因此,吸引了国内外学者的广泛关注,并将其应用于计算机视觉和图形学领域生...运动推断结构(Structure From Motion,SFM)是一种从图像或视频序列生成三维点云模型的技术.由于SFM能够产生与输入图像或视频场景具有较高几何一致性的三维模型,因此,吸引了国内外学者的广泛关注,并将其应用于计算机视觉和图形学领域生成场景的三维模型,例如一些经典的应用有三维重建、增强现实、虚拟现实和无人驾驶等.特征跟踪作为运动推断结构的关键基础技术,可用来在图像和视频序列中寻找对应的匹配点,这些匹配点的质量直接影响着SFM生成的三维点云模型的几何形状.因此,为了提高SFM生成的点云模型与真实场景在几何上的一致性,研究者们提出了大量的特征跟踪方法,这些方法主要分为两类:处理无序图像的特征跟踪方法和处理视频序列的特征跟踪方法.然而,在现有的特征跟踪方法中,研究者们主要集中于在特定应用环境下如何提高特征跟踪的精度与时间效率,而忽略了特征跟踪领域尚未解决的一些问题.为了促进特征跟踪技术的发展和提高SFM生成的点云模型的质量,该论文综述了现有的特征跟踪方法.具体地说,该论文首先详细地分析了处理无序图像集合和视频序列的特征跟踪方法,阐述每个特征跟踪方法的核心思想、优点与不足.其次,总结了特征跟踪领域一些可用的算法,如特征检测子、特征描述子和特征匹配方法,以及一些标准的测试数据集.第三,在不同类型的数据集上评估了一些经典的特征跟踪方法,以便为选择合适的特征跟踪方法提供参考.第四,总结了特征跟踪领域一些迫切需要解决的问题,讨论了影响特征跟踪方法时间效率和精度的主要因素,以便促进特征跟踪技术的发展.最后,探讨了特征跟踪技术的发展趋势,为未来研究指明方向.展开更多
文摘植物形态伴随着植物生长过程而发生变化,植物的三维重建对研究植物形态对植物生物量估测、植物病害虫害、基因型表达等有着很重要的意义。目前三维重建方法重建出的三维点云多包含植物的形态、颜色等特征,无法反应植物营养状况(如叶绿素含量)、病虫害胁迫等原因造成有机质空间三维分布改变,同时以往手段都需要专门仪器,携带和作业都受到很大限制。多光谱图像能够反应有机质含量等化学值的分布,在近地面遥感、农产品质量无损检测等发面取得了广泛的应用。该文通过采集31张4叶龄油菜的多光谱图像,使用运动恢复结构算法(structure from motion)方法对其进行空间三维重建,得到油菜的三维点云,并对点云中噪声点进行滤除。以控制点和控制长度对所得模型进行评价,得到长度最大偏差在0.1023 cm,RMSE=0.052599,证明该方法重建所得模型具有较好的空间均匀性与准确性,最后计算NDVI指数空间分布。证明所得模型对将来研究植物营养与病虫害胁迫空间分布有着重要意义。
文摘运动推断结构(Structure From Motion,SFM)是一种从图像或视频序列生成三维点云模型的技术.由于SFM能够产生与输入图像或视频场景具有较高几何一致性的三维模型,因此,吸引了国内外学者的广泛关注,并将其应用于计算机视觉和图形学领域生成场景的三维模型,例如一些经典的应用有三维重建、增强现实、虚拟现实和无人驾驶等.特征跟踪作为运动推断结构的关键基础技术,可用来在图像和视频序列中寻找对应的匹配点,这些匹配点的质量直接影响着SFM生成的三维点云模型的几何形状.因此,为了提高SFM生成的点云模型与真实场景在几何上的一致性,研究者们提出了大量的特征跟踪方法,这些方法主要分为两类:处理无序图像的特征跟踪方法和处理视频序列的特征跟踪方法.然而,在现有的特征跟踪方法中,研究者们主要集中于在特定应用环境下如何提高特征跟踪的精度与时间效率,而忽略了特征跟踪领域尚未解决的一些问题.为了促进特征跟踪技术的发展和提高SFM生成的点云模型的质量,该论文综述了现有的特征跟踪方法.具体地说,该论文首先详细地分析了处理无序图像集合和视频序列的特征跟踪方法,阐述每个特征跟踪方法的核心思想、优点与不足.其次,总结了特征跟踪领域一些可用的算法,如特征检测子、特征描述子和特征匹配方法,以及一些标准的测试数据集.第三,在不同类型的数据集上评估了一些经典的特征跟踪方法,以便为选择合适的特征跟踪方法提供参考.第四,总结了特征跟踪领域一些迫切需要解决的问题,讨论了影响特征跟踪方法时间效率和精度的主要因素,以便促进特征跟踪技术的发展.最后,探讨了特征跟踪技术的发展趋势,为未来研究指明方向.