期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于SVM输出概率和后置滤波的运动目标分类 被引量:3
1
作者 李占闯 肖国强 +1 位作者 代毅 邱开金 《计算机应用研究》 CSCD 北大核心 2010年第2期778-780,共3页
提出了一种新的运动目标分类方法,该方法利用sigmoid函数将标准SVM的输出结果直接转换为目标所属类别的概率,避免了分类器的组合问题;同时该方法还利用后置加权均值滤波器对SVM的初始输出结果进行滤波平滑处理,进一步提高了分类的正确... 提出了一种新的运动目标分类方法,该方法利用sigmoid函数将标准SVM的输出结果直接转换为目标所属类别的概率,避免了分类器的组合问题;同时该方法还利用后置加权均值滤波器对SVM的初始输出结果进行滤波平滑处理,进一步提高了分类的正确率。实验结果表明,该方法能有效地提高运动目标分类的精度。 展开更多
关键词 支持向量机 后验概率 均值滤波 运动目标分类
在线阅读 下载PDF
基于改进TCN模型的野外运动目标分类 被引量:4
2
作者 范裕莹 李成娟 +1 位作者 易强 李宝清 《计算机工程》 CAS CSCD 北大核心 2021年第9期106-112,共7页
野外运动目标信号的背景噪声复杂,利用单模态声音信号进行野外目标分类识别率低且鲁棒性差。针对该问题,提出一种基于声震多模态融合的网络模型。借鉴DenseNet网络密集连接的思想改进时域卷积网络,从而对四通道声音信号和单通道震动信... 野外运动目标信号的背景噪声复杂,利用单模态声音信号进行野外目标分类识别率低且鲁棒性差。针对该问题,提出一种基于声震多模态融合的网络模型。借鉴DenseNet网络密集连接的思想改进时域卷积网络,从而对四通道声音信号和单通道震动信号进行深层次的特征提取,并将两种信号相互融合得到最终的目标分类结果。同时,使用带权重的损失函数解决因数据不均衡导致的泛化性能差的问题。实验结果表明,融合网络的识别准确率达到92.92%,较单模态输入网络提高了6.63%~9.46%,且该网络具有较强的鲁棒性。 展开更多
关键词 声震信号 多模态融合 时域卷积网络 密集连接 运动目标分类
在线阅读 下载PDF
基于几何特征和贝叶斯的运动目标分类识别方法 被引量:2
3
作者 陈泓佑 李郁峰 《计算机工程与设计》 北大核心 2016年第12期3378-3383,共6页
针对传统基于几何特征的运动目标分类识别方法在模式类预定义、特征提取利用和分类器判定策略上的一些细节处理不足,提出一种改进方法。依据目标外轮廓形态差异程度,在模式类下定义子模式类;利用提取出目标的高维度几何特征向量,通过伪... 针对传统基于几何特征的运动目标分类识别方法在模式类预定义、特征提取利用和分类器判定策略上的一些细节处理不足,提出一种改进方法。依据目标外轮廓形态差异程度,在模式类下定义子模式类;利用提取出目标的高维度几何特征向量,通过伪划分方式分组得到若干子特征向量,多方面描述目标;通过分类器和子特征向量组计算的结果,利用综合判定机制,得到最终的分类识别结果。利用目标类别的平均识别率指标进行实验,实验结果表明,该方法对预定义的4个模式类有较好效果。 展开更多
关键词 运动目标分类识别 几何特征 特征分组 综合判定 最小错分贝叶斯方法 子模式类
在线阅读 下载PDF
低分辨机载雷达空地运动目标的分类识别算法 被引量:5
4
作者 王福友 罗钉 刘宏伟 《雷达学报(中英文)》 CSCD 2014年第5期497-504,共8页
分类识别技术是雷达当今和未来发展的重要需求,也是雷达的关键技术之一。目前研究较多的是基于宽带信号的目标识别,对雷达系统和目标信噪比具有较高的要求,且对角度非常敏感。针对低分辨机载雷达工作在下视模式下,慢速飞行目标和地面运... 分类识别技术是雷达当今和未来发展的重要需求,也是雷达的关键技术之一。目前研究较多的是基于宽带信号的目标识别,对雷达系统和目标信噪比具有较高的要求,且对角度非常敏感。针对低分辨机载雷达工作在下视模式下,慢速飞行目标和地面运动目标由于具有相似的多普勒速度和雷达散射截面(RCS),使得其对机载雷达慢速飞行目标检测、跟踪和识别形成干扰,该文提出了一种基于窄带分形和相位调制特征的机载雷达空地运动目标分类识别算法。文中以实测试飞数据进行分析验证,以支持向量机(SVM)为分类器,试验结果表明,该方法能对机载雷达直升机、汽车运动目标进行有效分类识别,当SNR?15 dB时,平均分类识别率在89%以上。 展开更多
关键词 低分辨机载雷达 空地运动目标分类识别 分形特征 相位调制特征 支持向量机(SVM)
在线阅读 下载PDF
A robust system for real-time pedestrian detection and tracking 被引量:2
5
作者 李琦 邵春福 赵熠 《Journal of Central South University》 SCIE EI CAS 2014年第4期1643-1653,共11页
A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow ... A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%. 展开更多
关键词 image processing technique pedestrian detection tracking video camera
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部