期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的肌电信号人体运动模式识别技术 被引量:1
1
作者 刘亚丽 鲁妍池 +1 位作者 马勋举 宋遒志 《兵工学报》 EI CAS CSCD 北大核心 2024年第7期2144-2158,共15页
随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的... 随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的原始肌电信号,经特征提取,转化为能量核相图和离散小波变换系数特征图,分别输入双卷积链神经网络的卷积神经网络分支和MobileNetV2分支,利用融合模块提取高层隐藏特征并进行充分交互。制备包括以上两种特征图像和传统肌电信号图谱在内的3种数据集。3组交叉实验结果表明:所提方法对6种自测下肢运动的平均识别准确率达94.19%,显著优于其他特征组合与网络架构;在ENABL3S开源数据集识别7种下肢运动中取得98.32%的稳态识别准确率,进一步验证了所提方法优良的肌电特征捕捉能力和模式识别准确性。 展开更多
关键词 外骨骼机器人 表面肌电信号 运动模式识别 双卷积链神经网络 能量核 小波变换分析
在线阅读 下载PDF
融合表面肌电和加速度信号的下肢运动模式识别研究 被引量:8
2
作者 席旭刚 汤敏彦 +2 位作者 张自豪 张启忠 罗志增 《电子学报》 EI CAS CSCD 北大核心 2017年第11期2735-2741,共7页
为了提高下肢运动模式识别率,本文设计了一种融合表面肌电和加速度信号的下肢运动模式识别方法.首先,用局部均值分解将表面肌电信号分解为多个乘积函数(Product Functions,PFs),再计算PF成分的多尺度排序熵.然后,通过拉普拉斯权重(Lapla... 为了提高下肢运动模式识别率,本文设计了一种融合表面肌电和加速度信号的下肢运动模式识别方法.首先,用局部均值分解将表面肌电信号分解为多个乘积函数(Product Functions,PFs),再计算PF成分的多尺度排序熵.然后,通过拉普拉斯权重(Laplacian score,LS)特征选择算法选定每路肌电信号的一个尺度排序熵为特征,并把该特征和加速度信号的排序熵组成特征向量.最后,根据类内欧氏距离和类间样本分布,设计了改进的二叉树支持向量机,把特征向量输入该支持向量机进行下肢运动模式分类.实验结果表明所提方法对七个日常动作的平均识别率达到98.62%,相较于其他方法有较高的识别率. 展开更多
关键词 下肢运动模式识别 表面肌电信号 加速度信号 多尺度排序熵 改进二叉树支持向量机
在线阅读 下载PDF
基于多源信息和粒子群优化算法的下肢运动模式识别 被引量:7
3
作者 刘磊 杨鹏 刘作军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第3期439-447,共9页
为了提高人体下肢多运动模式识别的准确性,提出一种基于多源信息和粒子群优化算法-误差反向传播(PSO-BP)神经网络的识别方法.建立下肢多源信息采集系统,该系统由下肢表面肌电信号、髋关节角度、髋关节加速度组成.选择肌电信号偏度、峭... 为了提高人体下肢多运动模式识别的准确性,提出一种基于多源信息和粒子群优化算法-误差反向传播(PSO-BP)神经网络的识别方法.建立下肢多源信息采集系统,该系统由下肢表面肌电信号、髋关节角度、髋关节加速度组成.选择肌电信号偏度、峭度和功率谱比值为肌电信号特征,髋关节角度细分模式均值比为腿部角度信号特征,加速度标准差、能量峰值、两轴相关性系数为髋关节加速度特征.按照主成分分析(PCA)方法融合上述特征值,利用PSO-BP进行识别.实验结果表明:该方法识别率为95.75%,平均识别时间为1.234 8s. 展开更多
关键词 多源信息 粒子群优化算法 主成分分析 下肢运动模式识别 BP神经网络
在线阅读 下载PDF
多图嵌入表示在人体运动模式识别中的应用 被引量:4
4
作者 褚晶辉 罗薇 吕卫 《计算机科学与探索》 CSCD 北大核心 2017年第6期941-949,共9页
新颖和恰当的算法是人体运动模式识别系统的关键。在获取加速度传感器信号的基础上,提出了一种人体运动模式识别算法,其中多图嵌入表示用于特征降维,最近邻用于模式分类。该算法通过特征分组对原始特征空间进行多个独立子集的划分,并生... 新颖和恰当的算法是人体运动模式识别系统的关键。在获取加速度传感器信号的基础上,提出了一种人体运动模式识别算法,其中多图嵌入表示用于特征降维,最近邻用于模式分类。该算法通过特征分组对原始特征空间进行多个独立子集的划分,并生成图;通过多维尺度分析法在每个子图上生成新的嵌入坐标,并找到这些嵌入坐标的线性组合来表示原始特征空间;最后通过最近邻分类器进行模式分类。该算法新颖、简单,能在最小信息丢失的基础上挖掘原始特征空间的潜在结构,提高特征选择的稳定性。实验结果表明,同其他代表性算法相比,该算法准确度高,能更好地区分人体运动。 展开更多
关键词 加速度传感器 人体运动模式识别 多图 多维标度法 图嵌入
在线阅读 下载PDF
一种用于视频对象编码的运动模式识别算法 被引量:3
5
作者 黎洪松 许保华 《电子学报》 EI CAS CSCD 北大核心 2007年第12期2324-2328,共5页
针对目前视频编码中广泛采用的块匹配运动估计补偿(ME+MC)算法的不足,提出一种基于自组织映射(SOM)的运动模式识别(MPR)算法,并将其应用于会议电视的视频对象编码中.为了改善SOM算法的性能,提出一种频率敏感的自组织映射算法(FSOM).实... 针对目前视频编码中广泛采用的块匹配运动估计补偿(ME+MC)算法的不足,提出一种基于自组织映射(SOM)的运动模式识别(MPR)算法,并将其应用于会议电视的视频对象编码中.为了改善SOM算法的性能,提出一种频率敏感的自组织映射算法(FSOM).实验表明,与ME+MC算法相比,FSOM-MPR算法具有更好的预测编码性能.对Claire视频测试序列,当压缩比为170∶1时,重建视频图像的平均峰值信噪比(PSNR)有2.7dB的改善. 展开更多
关键词 运动模式识别 基于对象的视频编码 自组织映射
在线阅读 下载PDF
基于CNN-Mogrifier LSTM的人体运动模式识别算法 被引量:9
6
作者 李浩 于志远 +1 位作者 尹业成 闫国栋 《电子测量技术》 北大核心 2021年第21期95-100,共6页
随着传感器、微电子等技术的发展,通过可穿戴式传感器对人体的运动模式进行识别,具有广泛的应用价值,如何提高识别的准确率,具有重要研究意义。考虑到人体下肢运动的特点,提出了一种基于CNN和Mogrifier LSTM的人体运动模式识别算法,先利... 随着传感器、微电子等技术的发展,通过可穿戴式传感器对人体的运动模式进行识别,具有广泛的应用价值,如何提高识别的准确率,具有重要研究意义。考虑到人体下肢运动的特点,提出了一种基于CNN和Mogrifier LSTM的人体运动模式识别算法,先利用CNN提取原始数据的局部相关特征,再使用Mogrifier LSTM代替全连接层,挖掘局部相关特征的前后依赖关系,对行走、跑步、上楼梯、下楼梯、上坡和下坡6种常见的运动模式进行识别。实验结果表明,相比于传统LSTM算法,Mogrifier LSTM的准确率提升了1.03%,将CNN和Mogrifier LSTM相结合后,准确率进一步提升了1.17%,达到了98.18%,证明了算法的优越性。 展开更多
关键词 形变长短时记忆网络 卷积神经网络 人体运动模式识别 惯性测量单元
在线阅读 下载PDF
基于EMD-多尺度熵和ELM的运动想象脑电特征提取和模式识别 被引量:13
7
作者 谢平 陈晓玲 +2 位作者 苏玉萍 梁振虎 李小俚 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第6期641-648,共8页
运动想象脑电特征是进行动作模式识别进而实现生物反馈技术的重要依据。在对侧躯体运动想象脑电识别方法的基础上,研究单侧躯体不同运动想象模式下的脑电特征提取问题,提出基于EMD-多尺度熵(MSE)的脑电信号瞬态特征提取及定量描述的方法... 运动想象脑电特征是进行动作模式识别进而实现生物反馈技术的重要依据。在对侧躯体运动想象脑电识别方法的基础上,研究单侧躯体不同运动想象模式下的脑电特征提取问题,提出基于EMD-多尺度熵(MSE)的脑电信号瞬态特征提取及定量描述的方法,设计基于极限学习机(ELM)的动作模式识别模型。通过对10名正常受试者在左侧手臂屈、伸动作模式下的运动想象脑电的分析,提取其特征并进行动作识别,结果证实其识别率可以达到90%以上。实验表明:所提出基于EMD-MSE的运动想象EEG特征提取方法,能够定量刻画不同运动模式下脑电信号的多尺度局部瞬态特征;进一步运用基于ELM学习算法的前馈神经网络,可以实现对不同运动模式下脑电EMD-SME特征的有效分类。 展开更多
关键词 单侧运动想象 脑电特征提取 EMD一多尺度熵 极限学习机 运动模式识别
在线阅读 下载PDF
基于时序分析的人体运动模式的识别及应用 被引量:8
8
作者 林海波 李扬 +1 位作者 张毅 罗元 《计算机应用与软件》 CSCD 北大核心 2014年第12期225-228,共4页
为了满足对老年人活动能力的检测需求,提出一种基于人体动作状态序列时序分析的运动模式识别方法。利用加速度传感器采集人体腰部的运动信息,通过滑动窗口对加速度数据进行自动检测、去噪和特征提取,构造隐马尔科夫模型实现人体日常活... 为了满足对老年人活动能力的检测需求,提出一种基于人体动作状态序列时序分析的运动模式识别方法。利用加速度传感器采集人体腰部的运动信息,通过滑动窗口对加速度数据进行自动检测、去噪和特征提取,构造隐马尔科夫模型实现人体日常活动序列的训练和识别。实验结果证明该方法可以有效区分不同的日常活动行为,能在辅助医疗中发挥重要作用。 展开更多
关键词 时序分析 运动模式识别 加速度传感器 隐马尔科夫模型
在线阅读 下载PDF
基于脑电和眼电的运动想象多尺度识别方法研究 被引量:5
9
作者 孙曜 文成林 韦巍 《电子学报》 EI CAS CSCD 北大核心 2018年第3期714-720,共7页
基于脑电信号对同一肢体不同动作想象模式进行识别的正确率低,已成为基于脑机接口对肢体瘫痪患者进行运动想象训练监控的方法,获得临床应用前必须解决的瓶颈问题.针对该问题,本文提出一种利用运动想象时眼睛的活动状态与所想象肢体动作... 基于脑电信号对同一肢体不同动作想象模式进行识别的正确率低,已成为基于脑机接口对肢体瘫痪患者进行运动想象训练监控的方法,获得临床应用前必须解决的瓶颈问题.针对该问题,本文提出一种利用运动想象时眼睛的活动状态与所想象肢体动作之间存在的耦合关系,进行运动想象多尺度识别的新方法.该方法首先在大尺度上,利用脑电信号对运动想象是否发生进行识别,再结合同一运动想象过程眼电信号协同变化模式的识别结果,基于决策融合在更精细的尺度上,对同一肢体不同动作的想象模式进行识别.实验结果表明,仅基于脑电进行右臂三种动作想象模式识别的平均正确率为63.0%,而应用所提出方法可以将其提高到91.4%.所提出方法可望有临床应用前景. 展开更多
关键词 脑电 眼电 运动想象模式识别 监控
在线阅读 下载PDF
基于扩展卡尔曼滤波的高程估计算法 被引量:1
10
作者 朱金鑫 徐正蓺 +1 位作者 刘旭 魏建明 《科学技术与工程》 北大核心 2017年第26期92-97,共6页
在室内行人定位系统中,行人的高程定位精度关系到整个定位系统的可靠性。提出一种基于腰间传感器的室内行人高程估计算法。首先利用支持向量机识别行人上楼下楼动作,针对行人的运动状态采用自适应的高程估计算法。针对气压计测量值易受... 在室内行人定位系统中,行人的高程定位精度关系到整个定位系统的可靠性。提出一种基于腰间传感器的室内行人高程估计算法。首先利用支持向量机识别行人上楼下楼动作,针对行人的运动状态采用自适应的高程估计算法。针对气压计测量值易受环境影响的问题,采用了基于EKF融合气压和加速度的高度估计算法,提高了高度估计算法的稳定性。经实验验证,当室内人员进行平地走、上楼等一连串动作后,基于差分气压测高法计算的高度误差为9.92%,基于加速度估计的行人高度误差为9.52%,EKF融合后定位误差下降到2.32%,提高了高程估计的精度。 展开更多
关键词 室内定位 运动模式识别 高程估计 传感器 扩展卡尔曼滤波
在线阅读 下载PDF
一种调频广播信号辅助PDR的室内定位技术 被引量:1
11
作者 田婧楠 丛丽 秦红磊 《导航定位学报》 CSCD 2023年第4期104-112,共9页
针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下... 针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下,提出一种调频(frequencymodulation,FM)广播信号辅助PDR的室内行人定位技术:在传播模型理论基础上探究FM信号接收信号强度指数(RSSI)与步长的关系,将其与加速度组合以提升步长估计的适用性;然后通过分析FM信号在直线/转弯运动模式下的变化,将其与角速度组合以提升模式识别准确率,并使用模式识别结果约束航向漂移误差;最后,综合步长与航向估计结果实现定位。实验结果表明,引入FM信号后定位误差均值可分别减小36.1%、78.9%。 展开更多
关键词 室内定位 行人航迹推算(PDR) 运动模式识别 无线电信号 调频(FM)信号 接收信号强度指数(RSSI)
在线阅读 下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
12
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部