针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下...针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下,提出一种调频(frequencymodulation,FM)广播信号辅助PDR的室内行人定位技术:在传播模型理论基础上探究FM信号接收信号强度指数(RSSI)与步长的关系,将其与加速度组合以提升步长估计的适用性;然后通过分析FM信号在直线/转弯运动模式下的变化,将其与角速度组合以提升模式识别准确率,并使用模式识别结果约束航向漂移误差;最后,综合步长与航向估计结果实现定位。实验结果表明,引入FM信号后定位误差均值可分别减小36.1%、78.9%。展开更多
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
文摘针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下,提出一种调频(frequencymodulation,FM)广播信号辅助PDR的室内行人定位技术:在传播模型理论基础上探究FM信号接收信号强度指数(RSSI)与步长的关系,将其与加速度组合以提升步长估计的适用性;然后通过分析FM信号在直线/转弯运动模式下的变化,将其与角速度组合以提升模式识别准确率,并使用模式识别结果约束航向漂移误差;最后,综合步长与航向估计结果实现定位。实验结果表明,引入FM信号后定位误差均值可分别减小36.1%、78.9%。
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.