期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于盲源分离的运动想象脑电信号特征提取方法的研究 被引量:6
1
作者 张立国 张玉曼 +1 位作者 金梅 于国辉 《计量学报》 CSCD 北大核心 2015年第5期535-539,共5页
运动想象脑电信号被广泛应用于脑机接口系统中。针对如何准确有效地提取运动想象脑电信号特征的问题,通过分析运动想象脑电信号时域、频域和头皮空间域的特征,提出了以小波变换为预处理,并利用二阶盲辨识算法和信息论特征提取算法相... 运动想象脑电信号被广泛应用于脑机接口系统中。针对如何准确有效地提取运动想象脑电信号特征的问题,通过分析运动想象脑电信号时域、频域和头皮空间域的特征,提出了以小波变换为预处理,并利用二阶盲辨识算法和信息论特征提取算法相结合获取的空间滤波器,从时域、频域和头皮空间域对运动想象脑电信号进行特征提取的方法。实验结果表明,采用时域、频域和空间域提取特征的方法性能有明显提高,并且将二阶盲辨识算法和信息论特征提取算法相结合获取的空间滤波器能够反映更真实的大脑源活动。 展开更多
关键词 计量学 运动想象脑电信号 特征提取 盲源分离 信息论特征提取 空间滤波
在线阅读 下载PDF
基于小波包和串并行CNN的脑电信号分类 被引量:3
2
作者 谷学静 位占锋 +2 位作者 刘海望 郭俊 沈攀 《微电子学与计算机》 2021年第6期60-65,共6页
针对运动想象脑电信号(EEG)的非线性、非平稳性特点,提出了一种结合小波包变换(WPT)和串并行卷积神经网络(SPCNN)的脑电信号分类方法.在小波包变换过程中,对脑电信号进行时频分解,选取与运动想象密切相关的频率段进行重构,重构后的脑电... 针对运动想象脑电信号(EEG)的非线性、非平稳性特点,提出了一种结合小波包变换(WPT)和串并行卷积神经网络(SPCNN)的脑电信号分类方法.在小波包变换过程中,对脑电信号进行时频分解,选取与运动想象密切相关的频率段进行重构,重构后的脑电信号保留了有效的时频信息.考虑到脑电信号不同通道之间以及通道内的特征,构建了SPCNN网络模型自动提取有效的特征并进行分类.利用公开的竞赛数据集BCI competition IV 2b进行验证,结果表明:该方法能自适应的提取到有效特征,平均分类准确率达到了84.77%,比卷积神经网络提高了6.49%,为脑机接口系统的研究提供了一种分类方法. 展开更多
关键词 运动想象脑电信号 小波包变换 卷积神经网络 特征提取
在线阅读 下载PDF
基于振动模态参数识别的脑电信号特征提取 被引量:1
3
作者 杨怀花 叶庆卫 《无线通信技术》 2021年第3期58-62,共5页
对运动想象脑电信号的动力学模型进行了分析,将其分成两个阶段(强非线性的瞬态阶段和弱非线性的自由响应阶段),并构建了一种新的特征提取算法。首先通过起始点扫描的方式对脑电信号进行分割来获得自由响应阶段的脑电信号;然后针对自由... 对运动想象脑电信号的动力学模型进行了分析,将其分成两个阶段(强非线性的瞬态阶段和弱非线性的自由响应阶段),并构建了一种新的特征提取算法。首先通过起始点扫描的方式对脑电信号进行分割来获得自由响应阶段的脑电信号;然后针对自由响应阶段产生的脑电信号,引入振动多模态参数识别ITD(Ibrahim Time Domain)算法来提取特征组合成特征向量;最后利用Adaboost分类器进行自适应特征选择和分类。运用此方法对国际标准数据库The largest SCP data of Motor-Imagery中的CLA运动想象数据集进行特征提取和特征选择与分类,其平均分类准确率高达90%以上。与现有的特征提取算法相比,获得了更好的分类性能和稳定性。 展开更多
关键词 运动想象脑电信号 动力学模型 ITD模态参数识别 ADABOOST算法
在线阅读 下载PDF
基于连续小波变换和符号传递熵的脑功能网络构建方法 被引量:7
4
作者 李明爱 张圆圆 《电子学报》 EI CAS CSCD 北大核心 2022年第7期1600-1608,共9页
为有效利用运动想象脑电信号(Motor Imagery Electroencephalogram,MI-EEG)的频域信息并精确反映脑电极之间的非线性因果交互作用,本文提出一种基于连续小波变换和符号传递熵的脑功能网络构建方法.首先,对每导MI-EEG进行连续小波变换,... 为有效利用运动想象脑电信号(Motor Imagery Electroencephalogram,MI-EEG)的频域信息并精确反映脑电极之间的非线性因果交互作用,本文提出一种基于连续小波变换和符号传递熵的脑功能网络构建方法.首先,对每导MI-EEG进行连续小波变换,求得其时-频-能量矩阵;然后,将与运动想象密切相关的频带内各频率所对应的时间-能量序列依次拼接,得到各导联的一维时频能量序列;最后,基于任意两电极时频能量序列间的符号传递熵计算连接矩阵,构建脑功能网络.实验结果表明,以电极时频能量序列间的符号传递熵构建的脑功能网络,能够有效反映MIEEG的时频特征和非线性特征信息传递,相比于传统脑网络构建方法,更有利于增强不同运动想象任务的可分性. 展开更多
关键词 -机接口 运动想象脑电信号 连续小波变换 符号传递熵 功能网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部