期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应残差的运动图像去模糊
被引量:
4
1
作者
欧阳宁
邓超阳
林乐平
《计算机工程与设计》
北大核心
2021年第6期1684-1690,共7页
针对当前运动图像去模糊网络忽略了运动模糊图像的非均匀性,不能有效地恢复图像的高频细节及去除伪影等问题,在对抗网络基础上提出一种基于自适应残差的运动图像去模糊方法。在生成网络中构造由形变卷积模块和通道注意力模块组成的自适...
针对当前运动图像去模糊网络忽略了运动模糊图像的非均匀性,不能有效地恢复图像的高频细节及去除伪影等问题,在对抗网络基础上提出一种基于自适应残差的运动图像去模糊方法。在生成网络中构造由形变卷积模块和通道注意力模块组成的自适应残差模块。其中,形变卷积模块学习运动模糊图像特征的形变量,可以根据图像的形变信息动态调整卷积核的形状和大小,提高网络适应图像形变的能力。通道注意力模块对所提取的形变特征进行通道调整,获取更多的图像高频特征,增强恢复后图像的纹理细节。在公开的GOPRO数据集上进行实验,实验结果表明,该算法的峰值信噪比(PSNR)有较大的提升,能够重建出纹理细节丰富的高质量图像。
展开更多
关键词
运动图像去模糊
非均匀性
形变卷积模块
通道注意力模块
自适应
在线阅读
下载PDF
职称材料
基于事件及考虑像素级模糊程度的图像去模糊
被引量:
2
2
作者
葛城轩
朱尊杰
+4 位作者
陆鸣
张文豪
路荣丰
王国相
郑博仑
《信号处理》
北大核心
2025年第2期312-324,共13页
在图像去模糊任务中,现有的端到端深度学习方法通常使用共享的卷积核来处理图像的整体空间位置,即使用的卷积核在整个图像的所有位置上都是相同的,不会根据具体位置的不同而改变。这意味着这些方法在处理图像时,无论图像中某个区域的模...
在图像去模糊任务中,现有的端到端深度学习方法通常使用共享的卷积核来处理图像的整体空间位置,即使用的卷积核在整个图像的所有位置上都是相同的,不会根据具体位置的不同而改变。这意味着这些方法在处理图像时,无论图像中某个区域的模糊程度如何,都使用相同的卷积核进行处理。然而,在某些复杂的模糊场景中,使用共享卷积核可能无法很好地处理图像的非均匀模糊情况。为此,本文提出了一种创新方法,利用像素级模糊程度来增强端到端图像去模糊的效果。具体来说,本文设计并训练了一个去模糊网络(Deblurring Network,DeblurNet),能够从输入图像和曝光时间内的事件数据中精确估计模糊程度图。随后,本文通过基于模糊程度的特征调制(Degree-based Feature Modulation,DFM)技术,依据模糊程度图自适应调节DeblurNet的特征。DeblurNet是一个端到端卷积神经网络,专门用于复原模糊图像的清晰度,通过动态卷积核来处理不同模糊程度的区域。这一策略实现了对非均匀模糊的空间可变卷积,从而有效地去除图像中的非均匀模糊。本文在合成数据集和真实事件数据集上进行了大量实验,并使用公开方法作为DeblurNet的基线。结果表明,提出的方法能够在合成和真实数据集上持续提升现有方法的性能,展示出较好的泛化能力。
展开更多
关键词
图像
运动
去模糊
事件相机
模糊
度
特征调制
在线阅读
下载PDF
职称材料
题名
基于自适应残差的运动图像去模糊
被引量:
4
1
作者
欧阳宁
邓超阳
林乐平
机构
桂林电子科技大学认知无线电与信息处理省部共建教育部重点实验室
桂林电子科技大学信息与通信学院
出处
《计算机工程与设计》
北大核心
2021年第6期1684-1690,共7页
基金
国家自然科学基金项目(61661017、61967005、U1501252)
广西自然科学基金项目(2017GXNSFBA198212)
+3 种基金
广西科技基地和人才专项基金项目(桂科AD19110060)
中国博士后科学基金面上基金项目(2016M602923XB)
认知无线电教育部重点实验室基金项目(CRKL190107、CRKL160104)
桂林电子科技大学研究生教育创新计划基金项目(2019YCXS022)。
文摘
针对当前运动图像去模糊网络忽略了运动模糊图像的非均匀性,不能有效地恢复图像的高频细节及去除伪影等问题,在对抗网络基础上提出一种基于自适应残差的运动图像去模糊方法。在生成网络中构造由形变卷积模块和通道注意力模块组成的自适应残差模块。其中,形变卷积模块学习运动模糊图像特征的形变量,可以根据图像的形变信息动态调整卷积核的形状和大小,提高网络适应图像形变的能力。通道注意力模块对所提取的形变特征进行通道调整,获取更多的图像高频特征,增强恢复后图像的纹理细节。在公开的GOPRO数据集上进行实验,实验结果表明,该算法的峰值信噪比(PSNR)有较大的提升,能够重建出纹理细节丰富的高质量图像。
关键词
运动图像去模糊
非均匀性
形变卷积模块
通道注意力模块
自适应
Keywords
motion image deblurring
non-uniformity
deformation convolution module
channel attentional module
adaptive
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于事件及考虑像素级模糊程度的图像去模糊
被引量:
2
2
作者
葛城轩
朱尊杰
陆鸣
张文豪
路荣丰
王国相
郑博仑
机构
杭州电子科技大学自动化学院
杭州电子科技大学丽水研究院
英特尔中国研究院
杭州腾讯魔乐软件有限公司
丽水学院
出处
《信号处理》
北大核心
2025年第2期312-324,共13页
基金
浙江省重点研发计划(2023C01044)
国家自然科学基金(62301198)
+1 种基金
浙江省属高校基本科研业务费(GK239909299001-013)
杭州电子科技大学丽水研究院资助项目(KY2023001,KY2023004)。
文摘
在图像去模糊任务中,现有的端到端深度学习方法通常使用共享的卷积核来处理图像的整体空间位置,即使用的卷积核在整个图像的所有位置上都是相同的,不会根据具体位置的不同而改变。这意味着这些方法在处理图像时,无论图像中某个区域的模糊程度如何,都使用相同的卷积核进行处理。然而,在某些复杂的模糊场景中,使用共享卷积核可能无法很好地处理图像的非均匀模糊情况。为此,本文提出了一种创新方法,利用像素级模糊程度来增强端到端图像去模糊的效果。具体来说,本文设计并训练了一个去模糊网络(Deblurring Network,DeblurNet),能够从输入图像和曝光时间内的事件数据中精确估计模糊程度图。随后,本文通过基于模糊程度的特征调制(Degree-based Feature Modulation,DFM)技术,依据模糊程度图自适应调节DeblurNet的特征。DeblurNet是一个端到端卷积神经网络,专门用于复原模糊图像的清晰度,通过动态卷积核来处理不同模糊程度的区域。这一策略实现了对非均匀模糊的空间可变卷积,从而有效地去除图像中的非均匀模糊。本文在合成数据集和真实事件数据集上进行了大量实验,并使用公开方法作为DeblurNet的基线。结果表明,提出的方法能够在合成和真实数据集上持续提升现有方法的性能,展示出较好的泛化能力。
关键词
图像
运动
去模糊
事件相机
模糊
度
特征调制
Keywords
image motion deblurring
event camera
blurry degree
feature modulation
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自适应残差的运动图像去模糊
欧阳宁
邓超阳
林乐平
《计算机工程与设计》
北大核心
2021
4
在线阅读
下载PDF
职称材料
2
基于事件及考虑像素级模糊程度的图像去模糊
葛城轩
朱尊杰
陆鸣
张文豪
路荣丰
王国相
郑博仑
《信号处理》
北大核心
2025
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部