在高斯白噪声环境下,针对双基地多输入多输出雷达点目标相对发射和接收阵列方位角DODDOA(Direction Of Departure-Direction Of Arrival)联合估计问题,提出了一种新方法.首先将点目标所在空间构建为一个关于到达角的二维密集字典,将各...在高斯白噪声环境下,针对双基地多输入多输出雷达点目标相对发射和接收阵列方位角DODDOA(Direction Of Departure-Direction Of Arrival)联合估计问题,提出了一种新方法.首先将点目标所在空间构建为一个关于到达角的二维密集字典,将各个点目标在该密集字典进行投影得到各个点目标在该字典下的稀疏表示.在稀疏性构建的前提下,采用充分挖掘信号稀疏性的加权l1范数最小化约束模型对点目标的角度信息进行求解.为了使该算法在低信噪比情况下能够更稳健地重构各点目标的二位方位角,对其权重进行了改进以达到抑制噪声的效果.展开更多
利用压缩感知实现运动目标的稀疏成像时,运动引起的多普勒频移会增加模型维度,改变回波的中心频率,并影响测量矩阵的互相干特性。为了改善 MIMO 雷达对运动目标的三维成像性能,提出了一种高效的成像方法,在各维分别搜索目标的分布信息,...利用压缩感知实现运动目标的稀疏成像时,运动引起的多普勒频移会增加模型维度,改变回波的中心频率,并影响测量矩阵的互相干特性。为了改善 MIMO 雷达对运动目标的三维成像性能,提出了一种高效的成像方法,在各维分别搜索目标的分布信息,并由该信息作为索引重构新的低维测量矩阵,借此缩小目标区域范围,同时基于测量矩阵的互相干性,应用贝叶斯方法实现多普勒维度投影矩阵的优化,降低多普勒频率采样带来的强相干性,实现高效稀疏成像。仿真结果表明,所提方法可以明显地提升运算效率,具有高效精确的成像性能。展开更多
文摘在高斯白噪声环境下,针对双基地多输入多输出雷达点目标相对发射和接收阵列方位角DODDOA(Direction Of Departure-Direction Of Arrival)联合估计问题,提出了一种新方法.首先将点目标所在空间构建为一个关于到达角的二维密集字典,将各个点目标在该密集字典进行投影得到各个点目标在该字典下的稀疏表示.在稀疏性构建的前提下,采用充分挖掘信号稀疏性的加权l1范数最小化约束模型对点目标的角度信息进行求解.为了使该算法在低信噪比情况下能够更稳健地重构各点目标的二位方位角,对其权重进行了改进以达到抑制噪声的效果.
文摘利用压缩感知实现运动目标的稀疏成像时,运动引起的多普勒频移会增加模型维度,改变回波的中心频率,并影响测量矩阵的互相干特性。为了改善 MIMO 雷达对运动目标的三维成像性能,提出了一种高效的成像方法,在各维分别搜索目标的分布信息,并由该信息作为索引重构新的低维测量矩阵,借此缩小目标区域范围,同时基于测量矩阵的互相干性,应用贝叶斯方法实现多普勒维度投影矩阵的优化,降低多普勒频率采样带来的强相干性,实现高效稀疏成像。仿真结果表明,所提方法可以明显地提升运算效率,具有高效精确的成像性能。