期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于注意力机制的CNN-BiLSTM过闸流量预测模型
1
作者
何立新
沈正华
+1 位作者
张峥
雷晓辉
《水电能源科学》
北大核心
2025年第5期135-138,共4页
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制...
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制闸为例,选取其1年时间尺度的实际数据为模型输入,模型首先将输入数据标准化,再利用CNN提取特征信息,经过BiLSTM捕获序列数据中的前后向依赖关系,最后通过注意力机制评估信息的重要程度,对特征参数进行加权处理,实现对过闸流量的预测。结果表明,所建模型相比于传统的BP-NN、SVR、LSTM等预测模型具有更好的预测结果,模型的平均绝对误差、平均绝对百分比误差、均方根误差和决定系数分别为3.682、0.018、4.661、0.983,可为工程实践提供参考。
展开更多
关键词
过闸流量预测
BiLSTM
注意力机制
神经网络
在线阅读
下载PDF
职称材料
题名
基于注意力机制的CNN-BiLSTM过闸流量预测模型
1
作者
何立新
沈正华
张峥
雷晓辉
机构
河北工程大学水利水电学院
河北工程大学河北省智慧水利重点实验室
出处
《水电能源科学》
北大核心
2025年第5期135-138,共4页
基金
国家重点研发计划(2023YFC3209400)。
文摘
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制闸为例,选取其1年时间尺度的实际数据为模型输入,模型首先将输入数据标准化,再利用CNN提取特征信息,经过BiLSTM捕获序列数据中的前后向依赖关系,最后通过注意力机制评估信息的重要程度,对特征参数进行加权处理,实现对过闸流量的预测。结果表明,所建模型相比于传统的BP-NN、SVR、LSTM等预测模型具有更好的预测结果,模型的平均绝对误差、平均绝对百分比误差、均方根误差和决定系数分别为3.682、0.018、4.661、0.983,可为工程实践提供参考。
关键词
过闸流量预测
BiLSTM
注意力机制
神经网络
Keywords
gate flow prediction
BiLSTM
attention mechanism
neural network
分类号
TV663 [水利工程—水利水电工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于注意力机制的CNN-BiLSTM过闸流量预测模型
何立新
沈正华
张峥
雷晓辉
《水电能源科学》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部