期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
滇金丝猴迁移习性的初步观察 被引量:3
1
作者 自寿昌 邹淑荃 +3 位作者 林苏 拖丁 王小红 忠态 《四川动物》 1987年第1期41-43,共3页
关键词 滇金丝猴 迁移习性 幼猴 婴猴 家域 成年
在线阅读 下载PDF
鱼耳石的成因矿物学属性:环境标型及其研究新方法 被引量:8
2
作者 李胜荣 申俊峰 +4 位作者 罗军燕 杨良锋 高永华 曹烨 佟景贵 《矿物学报》 CAS CSCD 北大核心 2007年第3期241-248,共8页
鱼耳石是鱼类头骨两侧的组织器官,是典型生命矿物文石的载体,发育明显的环带结构。其环带数和韵律层厚度反映鱼龄和鱼体生长速率;其δ18O值能指示水体温度。利用环带的几何学特征、颜色、常量和微量元素特征与氧同位素和碳同位素组成结... 鱼耳石是鱼类头骨两侧的组织器官,是典型生命矿物文石的载体,发育明显的环带结构。其环带数和韵律层厚度反映鱼龄和鱼体生长速率;其δ18O值能指示水体温度。利用环带的几何学特征、颜色、常量和微量元素特征与氧同位素和碳同位素组成结合,可有效地鉴别鱼的种群结构,追索鱼的源区、迁移习性、营养水平,记录水体环境的变迁,预测未来水体环境变化趋势,指导渔业生产战略布局。本文首次开发的鱼耳石之文石纳米形貌和热发光参数,可有效地指示相应水体的环境特征,用于进行不同来源区的判别和鱼类资源管理。 展开更多
关键词 鱼耳石 鱼龄 温度计 种群划分 迁移习性 水体环境
在线阅读 下载PDF
Improvement of large-scale-region landslide susceptibility mapping accuracy by transfer learning
3
作者 ZHANG Wen-gang LIU Song-lin +3 位作者 WANG Lu-qi SUN Wei-xin ZHANG Yan-mei NIE Wen 《Journal of Central South University》 CSCD 2024年第11期3823-3837,共15页
Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarci... Machine-learning methodologies have increasingly been embraced in landslide susceptibility assessment.However,the considerable time and financial burdens of landslide inventories often result in persistent data scarcity,which frequently impedes the generation of accurate and informative landslide susceptibility maps.Addressing this challenge,this study compiled a nationwide dataset and developed a transfer learning-based model to evaluate landslide susceptibility in the Chongqing region specifically.Notably,the proposed model,calibrated with the warmup-cosine annealing(WCA)learning rate strategy,demonstrated remarkable predictive capabilities,particularly in scenarios marked by data limitations and when training data were normalized using parameters from the source region.This is evidenced by the area under the receiver operating characteristic curve(AUC)values,which exhibited significant improvements of 51.00%,24.40%and 2.15%,respectively,compared to a deep learning model,in contexts where only 1%,5%and 10%of data from the target region were used for retraining.Simultaneously,there were reductions in loss of 16.12%,27.61%and 15.44%,respectively,in these instances. 展开更多
关键词 data-limited cases transfer learning landslide susceptibility machine learning normalization based on the parameters of the source domain
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部