期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合快速边缘注意力的Transformer跟踪算法
1
作者 薛紫涵 葛海波 +2 位作者 王淑贤 安玉 杨雨迪 《计算机工程与应用》 北大核心 2025年第1期221-231,共11页
针对长期目标跟踪中出现模型退化和跟踪漂移的问题,提出了一种融合快速边缘注意力的Transformer跟踪算法TransFEA(fast edge attention on Transformer)。使用ResNet-50作为Siamese网络的骨干网络,并在其每个残差块后端引入注意力网络... 针对长期目标跟踪中出现模型退化和跟踪漂移的问题,提出了一种融合快速边缘注意力的Transformer跟踪算法TransFEA(fast edge attention on Transformer)。使用ResNet-50作为Siamese网络的骨干网络,并在其每个残差块后端引入注意力网络进行特征提取,增强目标的关键信息和全局信息;边缘注意力网络(edge attention network,EA)提取模板与搜索区域的特征向量,快速注意力网络(fast attention network,FA)计算注意响应值,确定两个区域的相似度,以此调整目标位置。设计多层感知器预测边界框,避免过多超参数,使跟踪器实现了准确性与轻量化的平衡。实验结果表明,TransFEA在LaSOT数据集上成功率和准确率分别为65.3%、69.1%,运行可以达到90 FPS,提高了长期跟踪的成功率和准确率。 展开更多
关键词 Transformer网络 边缘注意力网络 快速注意力网络 多层感知器
在线阅读 下载PDF
基于边缘图注意力网络的轴承智能故障诊断
2
作者 杜越 宁少慧 +2 位作者 段攀龙 邓功也 张少鹏 《机床与液压》 北大核心 2024年第6期190-195,共6页
基于欧几里德空间的数据包含着节点和边的关系信息,比传统的欧几里得空间的数据具有更多信息。然而,传统的图卷积以及图注意力网路注重于节点信息的提取,对于边的信息利用不够充分。对此,通过结合可视图算法和边缘图注意力网络(EGAT),... 基于欧几里德空间的数据包含着节点和边的关系信息,比传统的欧几里得空间的数据具有更多信息。然而,传统的图卷积以及图注意力网路注重于节点信息的提取,对于边的信息利用不够充分。对此,通过结合可视图算法和边缘图注意力网络(EGAT),将基于非欧几里德空间的不规则数据应用到轴承故障诊断领域。诊断过程分为两步:利用可视图算法将原始信号转化为图数据;利用EGAT对故障特征进行学习,然后即可进行故障诊断。实验结果表明:图卷积网络在单一轴承故障分类任务上能够达到100%的准确率,表明所提出的方法对于轴承故障诊断具有明显的作用。 展开更多
关键词 轴承故障诊断 边缘注意力网络 可视图算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部