期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于三支决策的不平衡数据过采样方法 被引量:32
1
作者 胡峰 王蕾 周耀 《电子学报》 EI CAS CSCD 北大核心 2018年第1期135-144,共10页
采样是解决不平衡数据分类问题的一个有效途径.文中结合三支决策理论,根据样本分布将样本划分成三个区域:正域、边界域和负域;在此基础上,分别对边界域和负域中的小类样本进行不同的过采样处理,提出了一种基于三支决策的不平衡数据过采... 采样是解决不平衡数据分类问题的一个有效途径.文中结合三支决策理论,根据样本分布将样本划分成三个区域:正域、边界域和负域;在此基础上,分别对边界域和负域中的小类样本进行不同的过采样处理,提出了一种基于三支决策的不平衡数据过采样算法(TWD-IDOS算法).实验结果表明,在C4.5、KNN和CART等分类器上,文中提出的算法能有效解决不平衡数据的二分类问题,在Recall、F-value、AUC等指标上优于文献中的过采样算法. 展开更多
关键词 三支决策 邻域粗糙集 边界采样 不平衡数据 SMOTE
在线阅读 下载PDF
基于采样技术的主动不平衡学习算法研究 被引量:2
2
作者 李青雯 孙丹 于化龙 《电子设计工程》 2018年第1期7-12,19,共7页
针对在不平衡分布数据中执行主动学习,其分类面容易形成偏倚,从而导致主动学习失效这一问题,拟采用采样技术作为学习过程的平衡控制策略,在调查了几种已有的采样算法的基础上,提出了一种边界过采样算法,并将其与主动学习相结合。此外,... 针对在不平衡分布数据中执行主动学习,其分类面容易形成偏倚,从而导致主动学习失效这一问题,拟采用采样技术作为学习过程的平衡控制策略,在调查了几种已有的采样算法的基础上,提出了一种边界过采样算法,并将其与主动学习相结合。此外,考虑到极限学习机所具有的泛化能力强、训练速度快等优点,拟采用其作为基分类器,来加速主动学习的进程。通过12个基准数据集对加入平衡控制策略的主动学习算法的性能进行了验证,结果表明:在不平衡场景下,主动学习确实会受到其负面影响,且引入了采样技术的主动学习算法性能明显更优。 展开更多
关键词 类别不平衡 主动学习 极限学习机 样本采样 边界采样
在线阅读 下载PDF
基于CD-BSMOTE的D-S证据融合变压器故障诊断
3
作者 鲁玲 高诚 +3 位作者 熊威 龚康 马辉 张鑫 《水电能源科学》 北大核心 2024年第5期192-196,共5页
针对变压器油中溶解气体数据集不均衡特性对故障诊断结果的影响,提出一种基于清除临界点改进的边界合成少数类过采样算法均衡数据集和Pearson冲突距离改进D-S证据融合的变压器故障诊断模型。首先,对少数类样本进行均衡化处理,根据K-mean... 针对变压器油中溶解气体数据集不均衡特性对故障诊断结果的影响,提出一种基于清除临界点改进的边界合成少数类过采样算法均衡数据集和Pearson冲突距离改进D-S证据融合的变压器故障诊断模型。首先,对少数类样本进行均衡化处理,根据K-means聚类结果清除处于临界位置的样本;其次,搭建梯度提升树、随机森林、BP神经网络的故障诊断模型,实现变压器故障初步诊断;接着引入Pearson冲突距离改进D-S证据融合模型,实现诊断结果的融合决策;最后,经实际算例分析,诊断精确率达到92.65%。结果表明,所建模型能有效解决数据不平衡对诊断结果的影响,提高故障诊断精度。 展开更多
关键词 故障诊断 油中溶解气体分析 边界合成少数类过采样 Pearson冲突距离 D-S证据融合
在线阅读 下载PDF
基于卷积神经网络的液化预测模型及可解释性分析 被引量:2
4
作者 龙潇 孙锐 郑桐 《岩土力学》 EI CAS CSCD 北大核心 2024年第9期2741-2753,共13页
常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上... 常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上覆应力、门槛加速度、循环剪应力比、剪切波速、震级与地表峰值加速度11个液化特征建立卷积神经网络(convolutional neural network,简称CNN)模型。引入边界合成少数过采样技术消除不平衡数据集的影响。将CNN模型与随机森林模型、逻辑回归模型、支持向量机模型、极致梯度提升模型和规范方法进行对比,并结合沙普利加性解释(SHapley Additive exPlanations,简称SHAP)分析输入特征对预测结果的影响趋势。结果表明,CNN模型准确率达92.58%,各项指标均优于其他4种机器学习模型和规范方法。对SHAP结果分析可知,修正标贯击数小于15的土层液化概率较高,循环剪应力比CSR小于0.25的土层更不易液化。各因素的影响规律均符合现有认知,预测模型合理可靠。 展开更多
关键词 机器学习 液化预测 卷积神经网络 边界合成少数过采样技术 沙普利加性解释(SHAP)
在线阅读 下载PDF
基于事务的概率标记数据包的IP回溯
5
作者 苏进胜 谢彦峰 张忠林 《兰州交通大学学报》 CAS 2006年第4期72-75,共4页
针对Dos攻击,提出了一种改进的IP溯源技术PTPM(Probabilistic Transaction Packet Marking),利用事务把一个路由器的标记信息经由中间路由器传播到目的主机,最后根据收到的数据包重构攻击路径.这种方案大大减少了回溯数据包的个数.
关键词 拒绝服务攻击 事务IP回溯 数据包标记 边界采样
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部