The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and te...The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and temperatures at the edges.An analytical solution of temperature for the laminated beam is present on the basis of the heat conduction theory in this paper.The proposed method is applicable to the beams with arbitrary thickness and layer numbers.Due to the complexity of the boundary conditions,the temperature field to be determined was considered from two sources.The first part was the temperature field from the complex temperature conditions at two edges of the laminated beam.The solution for the temperature of the first part was constructed to satisfy temperature boundary conditions at two edges.The second part was the temperature field from the upper and lower surface temperatures without taking account of the thermal conditions at two edges.In this part,the exact solution for the temperature was obtained based on the heat conduction theory.The convergence of the solution was examined by analyzing terms of Fourier series.The validity and feasibility of the proposed method was verified by comparing theoretical results with numerical results due to the equivalent single layer approach and the finite element method(FEM).The influences of surface temperatures,beam thicknesses,layer numbers and material properties with respects to the solution of the temperature field of the beam were investigated via a series of parametric studies.展开更多
Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are ess...Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling.Based on the stationary potential energy principle,the analytical expressions for the rotational restraint stiffness(RRS)of the web upper edge as well as the RRS and the lateral restraint stiffness(LRS)of the bottom plate were derived.Also,the SCCBB critical moment formula under the hogging moment was derived.Using twenty specimens,the theoretical calculation method is compared with the finite-element method.Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs,top steel flange,and other factors on the bottom plate.Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge.Under the hogging moment,the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment.With increasing RRS of the web upper edge,the SCCBB critical moment increases at first and then tends to be stable.展开更多
基金Projects(52108148,51878319,51578267)supported by the National Natural Science Foundation of ChinaProject(2021M701483)supported by the China Postdoctoral Research Funding Program+1 种基金Project(2021K574C)supported by the Jiangsu Postdoctoral Research Funding Program,ChinaProject(BK20190833)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and temperatures at the edges.An analytical solution of temperature for the laminated beam is present on the basis of the heat conduction theory in this paper.The proposed method is applicable to the beams with arbitrary thickness and layer numbers.Due to the complexity of the boundary conditions,the temperature field to be determined was considered from two sources.The first part was the temperature field from the complex temperature conditions at two edges of the laminated beam.The solution for the temperature of the first part was constructed to satisfy temperature boundary conditions at two edges.The second part was the temperature field from the upper and lower surface temperatures without taking account of the thermal conditions at two edges.In this part,the exact solution for the temperature was obtained based on the heat conduction theory.The convergence of the solution was examined by analyzing terms of Fourier series.The validity and feasibility of the proposed method was verified by comparing theoretical results with numerical results due to the equivalent single layer approach and the finite element method(FEM).The influences of surface temperatures,beam thicknesses,layer numbers and material properties with respects to the solution of the temperature field of the beam were investigated via a series of parametric studies.
基金Projects(U1934207,52078487,51778630) supported by the National Natural Science Foundations of ChinaProject(502501006) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2019RS3009) supported by the Hunan Innovative Provincial Construction Project,China。
文摘Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling.Based on the stationary potential energy principle,the analytical expressions for the rotational restraint stiffness(RRS)of the web upper edge as well as the RRS and the lateral restraint stiffness(LRS)of the bottom plate were derived.Also,the SCCBB critical moment formula under the hogging moment was derived.Using twenty specimens,the theoretical calculation method is compared with the finite-element method.Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs,top steel flange,and other factors on the bottom plate.Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge.Under the hogging moment,the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment.With increasing RRS of the web upper edge,the SCCBB critical moment increases at first and then tends to be stable.