期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
噪声数据集上的边界点检测算法 被引量:3
1
作者 岳峰 邱保志 《计算机工程》 CAS CSCD 北大核心 2007年第19期82-84,共3页
为了有效检测聚类的边界点,提出了结合对象的密度及其Eps-邻域中数据的分布特点进行的边界点检测技术和边界点检测算法——BOUND。实验结果表明,BOUND能在含有不同形状、大小簇的噪声数据集上有效地检测出聚类的边界点,并且执行效率高。
关键词 边界点检测 Eps-邻域 密度
在线阅读 下载PDF
基于边界点检测的变密度聚类算法 被引量:3
2
作者 陈延伟 赵兴旺 《计算机应用》 CSCD 北大核心 2022年第8期2450-2460,共11页
密度聚类算法因具有对噪声鲁棒、能够发现任意形状的类等优点,得到了广泛的应用。然而,在实际应用中,这种算法面临着由于数据集中不同类的密度分布不均,且类与类之间的边界难以区分等导致聚类效果较差的问题。为解决以上问题,提出一种... 密度聚类算法因具有对噪声鲁棒、能够发现任意形状的类等优点,得到了广泛的应用。然而,在实际应用中,这种算法面临着由于数据集中不同类的密度分布不均,且类与类之间的边界难以区分等导致聚类效果较差的问题。为解决以上问题,提出一种基于边界点检测的变密度聚类算法(VDCBD)。首先,基于给出的相对密度度量方法识别变密度类之间的边界点,以此增强相邻类的可分性;其次,对非边界区域的点进行聚类以找到数据集的核心类结构;接着,依据高密度近邻分配原则将检测到的边界点分配到相应的核心类结构中;最后,基于类结构信息识别数据集中的噪声点。在人造数据集和UCI数据集上与K-means、基于密度的噪声应用空间聚类(DBSCAN)算法、密度峰值聚类算法(DPCA)、有效识别密度主干的聚类(CLUB)算法、边界剥离聚类(BP)算法进行了比较分析。实验结果表明,所提算法可以有效解决类分布密度不均、边界难以区分的问题,并在调整兰德指数(ARI)、标准化互信息(NMI)、F度量(FM)、准确度(ACC)评价指标上优于已有算法;在运行效率分析中,当数据规模较大时,VDCBD运行效率高于DPCA、CLUB和BP算法。 展开更多
关键词 密度聚类 相对密度 变密度 边界点检测 噪声识别
在线阅读 下载PDF
基于加权边界度的稀有类检测算法 被引量:6
3
作者 黄浩 何钦铭 +3 位作者 陈奇 钱烽 何江峰 马连航 《软件学报》 EI CSCD 北大核心 2012年第5期1195-1206,共12页
提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻... 提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻找稀有类的边界点,并选取加权边界度最高的边界点询问其类别标签.实验结果表明,与现有方法相比,该算法避免了现有方法的局限性,大幅度地提高了发现数据集中各个类的效率,并有效地缩短了算法运行所需要的运行时间. 展开更多
关键词 稀有类检测 边界点检测 加权边界 K近邻 反向k近邻
在线阅读 下载PDF
一种基于扩展区域查询的密度聚类算法
4
作者 杨杰明 吴启龙 +3 位作者 曲朝阳 张慧莉 蔺洪文 吕正卓 《计算机应用研究》 CSCD 北大核心 2017年第10期2938-2941,2992,共5页
针对DBSCAN算法中最小点数和最大邻域半径难以确定、算法时间开销大、对起始数据点的选择比较敏感,以及难以发现不同密度下的邻近簇等问题,提出一种基于扩展区域查询的密度聚类算法(GISN-DBSCAN)。该方法首先提出扩展区域查询算法,随后... 针对DBSCAN算法中最小点数和最大邻域半径难以确定、算法时间开销大、对起始数据点的选择比较敏感,以及难以发现不同密度下的邻近簇等问题,提出一种基于扩展区域查询的密度聚类算法(GISN-DBSCAN)。该方法首先提出扩展区域查询算法,随后采用最近邻域和反最近邻域的邻域关系,建立每个点的k-影响空间域;最后提出一种异常点判定函数,使得算法能够准确地识别边界点和噪声点。实验结果表明,GISN-DBSCAN算法能够有效地解决DBSCAN算法的不足。 展开更多
关键词 密度聚类算法 扩展区域查询 k-影响空间域 边界点检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部