期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
6
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv5s模型的边界框回归损失函数研究
被引量:
6
1
作者
董恒祥
潘江如
+2 位作者
董芙楠
赵晴
郭鸿鑫
《现代电子技术》
北大核心
2024年第3期179-186,共8页
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率...
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。
展开更多
关键词
车辆检测
边界
框
回归
损失
函数
目标尺度
YOLOv5s
CIoU
SIoU
Focal-EIoU
WIoU
在线阅读
下载PDF
职称材料
基于坐标注意力和软化非极大值抑制的密集安全帽检测
2
作者
尹向雷
苏妮
+1 位作者
解永芳
屈少鹏
《现代电子技术》
北大核心
2025年第2期153-161,共9页
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进...
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。
展开更多
关键词
安全帽检测
坐标注意力机制
软化非极大值抑制
YOLOv5s
WIoU
边界框损失函数
在线阅读
下载PDF
职称材料
基于优化权重的YOLOv7密集行人检测算法
3
作者
曹洁
牛瑜
梁浩鹏
《液晶与显示》
北大核心
2025年第3期505-515,共11页
针对自然复杂场景中行人拥挤和相互遮挡,导致检测精度不佳的问题,提出了一种基于优化权重的YOLOv7密集行人检测算法。首先,针对遮挡行人特征提取问题,利用跨空间高效多尺度注意力机制(Efficient Multi-Scale Attention Module with Cros...
针对自然复杂场景中行人拥挤和相互遮挡,导致检测精度不佳的问题,提出了一种基于优化权重的YOLOv7密集行人检测算法。首先,针对遮挡行人特征提取问题,利用跨空间高效多尺度注意力机制(Efficient Multi-Scale Attention Module with Cross-Spatial Learning,EMA)重新分配主干网络的权重,并跨维度学习不同通道特征之间的相关性,以增强模型对行人目标可见区域的关注。其次,针对检测模型复杂性较高的问题,设计了高效轻量化连接模块(Efficient Lightweight Connection Module,ELCM),旨在提升模型表达能力的同时加快训练速度。最后,构建了聚焦边界框损失函数Focal-SIoU loss,该损失函数注重抑制低质量样本,同时添加角度损失提高模型的检测精度。实验结果表明,所提算法在行人检测数据集Wider-Person与Crowd Human数据集上的均值平均精度分别达到83.7%和82.6%,相比其他先进的算法,在密集拥挤人群检测任务中有显著检测优势。
展开更多
关键词
密集行人检测
优化权重
聚焦
边界框损失函数
YOLOv7
在线阅读
下载PDF
职称材料
基于MFDC-SSD网络的接触网定位线夹缺陷识别
被引量:
1
4
作者
屈志坚
张博语
+1 位作者
杨行
李迪
《铁道学报》
EI
CAS
CSCD
北大核心
2024年第5期48-57,共10页
针对接触网应用环境复杂,定位线夹体积小、安装方向特殊、不易识别,传统的目标检测算法效果较差等问题,基于多尺度特征融合密集连接网络模型,提出了一种接触网定位线夹缺陷检测新方法。首先结合DenseNet与Inception模块对SSD模型的特征...
针对接触网应用环境复杂,定位线夹体积小、安装方向特殊、不易识别,传统的目标检测算法效果较差等问题,基于多尺度特征融合密集连接网络模型,提出了一种接触网定位线夹缺陷检测新方法。首先结合DenseNet与Inception模块对SSD模型的特征提取网络进行改进,在特定的特征层间共享上下文信息,提升特征提取能力。然后从网络深层到浅层,逐级采用FPN融合SSD检测的多尺度特征图,设计多特征融合的密集连接网络模型,最后将f GIoU作为边框损失函数,在训练中优化真实框和预测框的重合度。对采集的某段接触网定位线夹图像数据集进行检测识别。结果表明:该定位线夹缺陷检测方法可在复杂接触网背景下,对定位线夹脱落和松动进行检测,且在不同角度、亮度的图像中均具有较强的鲁棒性。
展开更多
关键词
接触网
缺陷识别
定位线夹
特征金字塔
边界框损失函数
在线阅读
下载PDF
职称材料
基于YOLOv5s−FSW模型的选煤厂煤矸检测研究
5
作者
燕碧娟
王凯民
+3 位作者
郭鹏程
郑馨旭
董浩
刘勇
《工矿自动化》
CSCD
北大核心
2024年第5期36-43,66,共9页
针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降...
针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降低模型的参数量和计算量提高检测速度;然后,在颈部网络引入无参型SimAM注意力机制,增强模型对复杂环境下重要目标的关注,进一步提高模型的特征提取能力;最后,在输出端用Wise−IoU替换CIoU边界框损失函数,使模型聚焦普通质量锚框,提高收敛速度和边框的检测精度。消融实验结果表明:与YOLOv5s模型相比,YOLOv5s−FSW模型的平均精度均值(mAP)提高了1.9%,模型权重减少了0.6 MiB,参数量减少了4.7%,检测速度提高了19.3%。对比实验结果表明:YOLOv5s−FSW模型的mAP达95.8%,较YOLOv5s−CBC,YOLOv5s−ASA,YOLOv5s−SDE模型分别提高了1.1%,1.5%和1.2%,较YOLOv5m,YOLOv6s模型分别提高了0.3%,0.6%;检测速度达36.4帧/s,较YOLOv5s−CBC,YOLOv5s−ASA模型分别提高了28.2%和20.5%,较YOLOv5m,YOLOv6s,YOLOv7模型分别提高了16.3%,15.2%,45.0%。热力图可视化实验结果表明:YOLOv5s−FSW模型对煤矸目标特征区域更加敏感且关注度更高。检测实验结果表明:在环境昏暗、图像模糊、目标相互遮挡的复杂场景下,YOLOv5s−FSW模型对煤矸目标检测的置信度得分高于YOLOv5s模型,且有效避免了误检和漏检现象的发生。
展开更多
关键词
煤矸检测
YOLOv5s
FasterNet
Block
SimAM注意力机制
Wise−IoU
边界框损失函数
在线阅读
下载PDF
职称材料
针对小目标的YOLOv5安全帽检测算法
被引量:
4
6
作者
李达
刘辉
《现代信息科技》
2023年第9期9-13,共5页
针对当前YOLOv5难以检测小目标、目标识别效果差等问题,提出了一种基于YOLOv5的改进模型。针对开源数据集小目标样本数量不足的问题,重新构建安全帽数据集,扩充小目标数量。引入轻量化的通道注意力ECA模块,提高模型对安全帽的识别能力...
针对当前YOLOv5难以检测小目标、目标识别效果差等问题,提出了一种基于YOLOv5的改进模型。针对开源数据集小目标样本数量不足的问题,重新构建安全帽数据集,扩充小目标数量。引入轻量化的通道注意力ECA模块,提高模型对安全帽的识别能力。将边界框损失函数替换为SIoU加速模型收敛。最后改进Neck部分的特征融合方式,并增加一个小目标检测层。改进算法在自建安全帽数据集上mAP@0.5、mAP@0.5:0.95相较于YOLOv5s分别提高2.6%、1.7%。
展开更多
关键词
安全帽佩戴检测
YOLOv5
ECA注意力
边界框损失函数
小目标检测
在线阅读
下载PDF
职称材料
题名
基于YOLOv5s模型的边界框回归损失函数研究
被引量:
6
1
作者
董恒祥
潘江如
董芙楠
赵晴
郭鸿鑫
机构
新疆农业大学交通与物流工程学院
新疆工程学院控制工程学院
出处
《现代电子技术》
北大核心
2024年第3期179-186,共8页
文摘
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。
关键词
车辆检测
边界
框
回归
损失
函数
目标尺度
YOLOv5s
CIoU
SIoU
Focal-EIoU
WIoU
Keywords
vehicle inspection
bounding box regression loss function
object scale
YOLOv5s
CIoU
SIoU
Focal⁃EIoU
WIoU
分类号
TN911.1-34 [电子电信—通信与信息系统]
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于坐标注意力和软化非极大值抑制的密集安全帽检测
2
作者
尹向雷
苏妮
解永芳
屈少鹏
机构
陕西理工大学电气工程学院
出处
《现代电子技术》
北大核心
2025年第2期153-161,共9页
基金
国家自然科学基金一般面上项目(62176146)
陕西省教育厅重点科学研究计划项目(20JS018)
陕西理工大学人才启动专项(SLGRCQD2114)。
文摘
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。
关键词
安全帽检测
坐标注意力机制
软化非极大值抑制
YOLOv5s
WIoU
边界框损失函数
Keywords
safety helmet detection
coordinate attention mechanism
Soft non-maximum suppression
YOLOv5s
WIoU
bounding box loss function
分类号
TN911.23-34 [电子电信—通信与信息系统]
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于优化权重的YOLOv7密集行人检测算法
3
作者
曹洁
牛瑜
梁浩鹏
机构
兰州理工大学电气工程与信息工程学院
兰州城市学院信息工程学院
兰州理工大学计算机与通信学院
出处
《液晶与显示》
北大核心
2025年第3期505-515,共11页
基金
甘肃省重点研发计划(No.22YF7GA130)。
文摘
针对自然复杂场景中行人拥挤和相互遮挡,导致检测精度不佳的问题,提出了一种基于优化权重的YOLOv7密集行人检测算法。首先,针对遮挡行人特征提取问题,利用跨空间高效多尺度注意力机制(Efficient Multi-Scale Attention Module with Cross-Spatial Learning,EMA)重新分配主干网络的权重,并跨维度学习不同通道特征之间的相关性,以增强模型对行人目标可见区域的关注。其次,针对检测模型复杂性较高的问题,设计了高效轻量化连接模块(Efficient Lightweight Connection Module,ELCM),旨在提升模型表达能力的同时加快训练速度。最后,构建了聚焦边界框损失函数Focal-SIoU loss,该损失函数注重抑制低质量样本,同时添加角度损失提高模型的检测精度。实验结果表明,所提算法在行人检测数据集Wider-Person与Crowd Human数据集上的均值平均精度分别达到83.7%和82.6%,相比其他先进的算法,在密集拥挤人群检测任务中有显著检测优势。
关键词
密集行人检测
优化权重
聚焦
边界框损失函数
YOLOv7
Keywords
dense pedestrian detection
optimized weights
focusing bounding box loss function
YOLOv7
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于MFDC-SSD网络的接触网定位线夹缺陷识别
被引量:
1
4
作者
屈志坚
张博语
杨行
李迪
机构
华东交通大学轨道交通基础设施性能监测与保障国家重点实验室
华东交通大学电气与自动化工程学院
出处
《铁道学报》
EI
CAS
CSCD
北大核心
2024年第5期48-57,共10页
基金
江西省自然科学基金(20232ACB204025)
江西省高层次高技能领军人才培养工程(202223323)
轨道交通基础设施性能监测与保障国家重点实验室自主课题(HJGZ2022203)。
文摘
针对接触网应用环境复杂,定位线夹体积小、安装方向特殊、不易识别,传统的目标检测算法效果较差等问题,基于多尺度特征融合密集连接网络模型,提出了一种接触网定位线夹缺陷检测新方法。首先结合DenseNet与Inception模块对SSD模型的特征提取网络进行改进,在特定的特征层间共享上下文信息,提升特征提取能力。然后从网络深层到浅层,逐级采用FPN融合SSD检测的多尺度特征图,设计多特征融合的密集连接网络模型,最后将f GIoU作为边框损失函数,在训练中优化真实框和预测框的重合度。对采集的某段接触网定位线夹图像数据集进行检测识别。结果表明:该定位线夹缺陷检测方法可在复杂接触网背景下,对定位线夹脱落和松动进行检测,且在不同角度、亮度的图像中均具有较强的鲁棒性。
关键词
接触网
缺陷识别
定位线夹
特征金字塔
边界框损失函数
Keywords
overhead contact system
defect identification
steady ear
feature pyramid
bounding box loss function
分类号
TM73 [电气工程—电力系统及自动化]
U225 [交通运输工程—道路与铁道工程]
在线阅读
下载PDF
职称材料
题名
基于YOLOv5s−FSW模型的选煤厂煤矸检测研究
5
作者
燕碧娟
王凯民
郭鹏程
郑馨旭
董浩
刘勇
机构
太原科技大学机械工程学院
山西人工智能矿山创新实验室有限公司
出处
《工矿自动化》
CSCD
北大核心
2024年第5期36-43,66,共9页
基金
山西省重点研发计划项目(202102010101010)。
文摘
针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降低模型的参数量和计算量提高检测速度;然后,在颈部网络引入无参型SimAM注意力机制,增强模型对复杂环境下重要目标的关注,进一步提高模型的特征提取能力;最后,在输出端用Wise−IoU替换CIoU边界框损失函数,使模型聚焦普通质量锚框,提高收敛速度和边框的检测精度。消融实验结果表明:与YOLOv5s模型相比,YOLOv5s−FSW模型的平均精度均值(mAP)提高了1.9%,模型权重减少了0.6 MiB,参数量减少了4.7%,检测速度提高了19.3%。对比实验结果表明:YOLOv5s−FSW模型的mAP达95.8%,较YOLOv5s−CBC,YOLOv5s−ASA,YOLOv5s−SDE模型分别提高了1.1%,1.5%和1.2%,较YOLOv5m,YOLOv6s模型分别提高了0.3%,0.6%;检测速度达36.4帧/s,较YOLOv5s−CBC,YOLOv5s−ASA模型分别提高了28.2%和20.5%,较YOLOv5m,YOLOv6s,YOLOv7模型分别提高了16.3%,15.2%,45.0%。热力图可视化实验结果表明:YOLOv5s−FSW模型对煤矸目标特征区域更加敏感且关注度更高。检测实验结果表明:在环境昏暗、图像模糊、目标相互遮挡的复杂场景下,YOLOv5s−FSW模型对煤矸目标检测的置信度得分高于YOLOv5s模型,且有效避免了误检和漏检现象的发生。
关键词
煤矸检测
YOLOv5s
FasterNet
Block
SimAM注意力机制
Wise−IoU
边界框损失函数
Keywords
coal gangue detection
YOLOv5s
FasterNet Block
SimAM attention mechanism
Wise IoU bounding box loss function
分类号
TD948.9 [矿业工程—选矿]
在线阅读
下载PDF
职称材料
题名
针对小目标的YOLOv5安全帽检测算法
被引量:
4
6
作者
李达
刘辉
机构
湖南师范大学物理电子科学学院
出处
《现代信息科技》
2023年第9期9-13,共5页
文摘
针对当前YOLOv5难以检测小目标、目标识别效果差等问题,提出了一种基于YOLOv5的改进模型。针对开源数据集小目标样本数量不足的问题,重新构建安全帽数据集,扩充小目标数量。引入轻量化的通道注意力ECA模块,提高模型对安全帽的识别能力。将边界框损失函数替换为SIoU加速模型收敛。最后改进Neck部分的特征融合方式,并增加一个小目标检测层。改进算法在自建安全帽数据集上mAP@0.5、mAP@0.5:0.95相较于YOLOv5s分别提高2.6%、1.7%。
关键词
安全帽佩戴检测
YOLOv5
ECA注意力
边界框损失函数
小目标检测
Keywords
safety helmet wearing detection
YOLOv5
ECA attention
bounding box loss function
small object detection
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv5s模型的边界框回归损失函数研究
董恒祥
潘江如
董芙楠
赵晴
郭鸿鑫
《现代电子技术》
北大核心
2024
6
在线阅读
下载PDF
职称材料
2
基于坐标注意力和软化非极大值抑制的密集安全帽检测
尹向雷
苏妮
解永芳
屈少鹏
《现代电子技术》
北大核心
2025
0
在线阅读
下载PDF
职称材料
3
基于优化权重的YOLOv7密集行人检测算法
曹洁
牛瑜
梁浩鹏
《液晶与显示》
北大核心
2025
0
在线阅读
下载PDF
职称材料
4
基于MFDC-SSD网络的接触网定位线夹缺陷识别
屈志坚
张博语
杨行
李迪
《铁道学报》
EI
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
5
基于YOLOv5s−FSW模型的选煤厂煤矸检测研究
燕碧娟
王凯民
郭鹏程
郑馨旭
董浩
刘勇
《工矿自动化》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
6
针对小目标的YOLOv5安全帽检测算法
李达
刘辉
《现代信息科技》
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部