基于A,φ-A法和库伦规范,推导了导体区域和非导体区域的有限元方程及自由空间的边界元方程,通过引入交界面条件,实现了将边界元矩阵等效为有限元矩阵求解的有限元-边界元耦合法(finite element and boundary element coupling method,FE...基于A,φ-A法和库伦规范,推导了导体区域和非导体区域的有限元方程及自由空间的边界元方程,通过引入交界面条件,实现了将边界元矩阵等效为有限元矩阵求解的有限元-边界元耦合法(finite element and boundary element coupling method,FE-BECM)。将FE-BECM应用于TEAM-7问题的计算,验证了该方法处理开域涡流问题的有效性。当FE-BECM应用于运动导体涡流场(moving conductor eddy current,MCEC)问题时,用有限元离散源电流区域和运动部件,用边界元离散自由空间并关联相互独立的有限元区域。该方法克服了常规有限元法使用1套网格处理运动问题所遇到的麻烦。使用有限元-边界元耦合法对单级线圈炮问题进行了计算,验证了算法处理运动导体涡流场问题的有效性。展开更多
采用有限元-边界积分(finite element boundary integral,FE-BI)方法研究了介质粗糙面上方涂覆目标的复合电磁散射特性,推导了一维介质粗糙面上方二维涂覆目标电磁散射的FE-BI公式.在仿真中,采用功能强大的有限元方法模拟涂覆目标内部场...采用有限元-边界积分(finite element boundary integral,FE-BI)方法研究了介质粗糙面上方涂覆目标的复合电磁散射特性,推导了一维介质粗糙面上方二维涂覆目标电磁散射的FE-BI公式.在仿真中,采用功能强大的有限元方法模拟涂覆目标内部场,对于涂覆目标与粗糙面之间的多重耦合作用则通过边界积分方程方法进行考虑.结合Monte-Carlo方法,数值计算了介质高斯粗糙面上方涂覆圆柱目标的电磁散射,分析了涂层材料介电常数、粗糙面粗糙度以及介质粗糙面介电常数变化对复合模型双站散射系数的影响.数值结果表明,相比于传统矩量法(method of moment,MoM),本文方法虽然在处理理想导体模型时效率略低,但可以处理MoM难以处理的复杂媒质电磁散射问题,且计算精度较高.展开更多
文摘基于A,φ-A法和库伦规范,推导了导体区域和非导体区域的有限元方程及自由空间的边界元方程,通过引入交界面条件,实现了将边界元矩阵等效为有限元矩阵求解的有限元-边界元耦合法(finite element and boundary element coupling method,FE-BECM)。将FE-BECM应用于TEAM-7问题的计算,验证了该方法处理开域涡流问题的有效性。当FE-BECM应用于运动导体涡流场(moving conductor eddy current,MCEC)问题时,用有限元离散源电流区域和运动部件,用边界元离散自由空间并关联相互独立的有限元区域。该方法克服了常规有限元法使用1套网格处理运动问题所遇到的麻烦。使用有限元-边界元耦合法对单级线圈炮问题进行了计算,验证了算法处理运动导体涡流场问题的有效性。
文摘采用有限元-边界积分(finite element boundary integral,FE-BI)方法研究了介质粗糙面上方涂覆目标的复合电磁散射特性,推导了一维介质粗糙面上方二维涂覆目标电磁散射的FE-BI公式.在仿真中,采用功能强大的有限元方法模拟涂覆目标内部场,对于涂覆目标与粗糙面之间的多重耦合作用则通过边界积分方程方法进行考虑.结合Monte-Carlo方法,数值计算了介质高斯粗糙面上方涂覆圆柱目标的电磁散射,分析了涂层材料介电常数、粗糙面粗糙度以及介质粗糙面介电常数变化对复合模型双站散射系数的影响.数值结果表明,相比于传统矩量法(method of moment,MoM),本文方法虽然在处理理想导体模型时效率略低,但可以处理MoM难以处理的复杂媒质电磁散射问题,且计算精度较高.