Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terz...Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.展开更多
In industrial applications involving metal and polymer sheets, the flow situation is strongly unsteady and the sheet temperature is a mixture of prescribed surface temperature and heat flux. Further, a proper choice o...In industrial applications involving metal and polymer sheets, the flow situation is strongly unsteady and the sheet temperature is a mixture of prescribed surface temperature and heat flux. Further, a proper choice of cooling liquid is also an important component of the analysis to achieve better outputs. In this paper, we numerically investigate Darcy-Forchheimer nanoliquid flows past an unsteady stretching surface by incorporating various effects, such as the Brownian and thermophoresis effects, Navier’s slip condition and convective thermal boundary conditions. To solve the governing equations, using suitable similarity transformations, the nonlinear ordinary differential equations are derived and the resulting coupled momentum and energy equations are numerically solved using the spectral relaxation method. Through the systematically numerical investigation, the important physical parameters of the present model are analyzed. We find that the presence of unsteadiness parameter has significant effects on velocity, temperature, concentration fields, the associated heat and mass transport rates. Also, an increase in inertia coefficient and porosity parameter causes an increase in the velocity at the boundary.展开更多
基金Foundation item: Project(50608038) supported by the National Natural Science Foundation of China
文摘Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.
基金Project(NRF-2016R1A2B4011009)supported by National Research Foundation of KoreaProject(KSTePS/VGST-KFIST(L1)/2017)supported by Vision Group of Science and Technology,Government of Karnataka,India
文摘In industrial applications involving metal and polymer sheets, the flow situation is strongly unsteady and the sheet temperature is a mixture of prescribed surface temperature and heat flux. Further, a proper choice of cooling liquid is also an important component of the analysis to achieve better outputs. In this paper, we numerically investigate Darcy-Forchheimer nanoliquid flows past an unsteady stretching surface by incorporating various effects, such as the Brownian and thermophoresis effects, Navier’s slip condition and convective thermal boundary conditions. To solve the governing equations, using suitable similarity transformations, the nonlinear ordinary differential equations are derived and the resulting coupled momentum and energy equations are numerically solved using the spectral relaxation method. Through the systematically numerical investigation, the important physical parameters of the present model are analyzed. We find that the presence of unsteadiness parameter has significant effects on velocity, temperature, concentration fields, the associated heat and mass transport rates. Also, an increase in inertia coefficient and porosity parameter causes an increase in the velocity at the boundary.