期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
一种改进IoU损失的边框回归损失函数 被引量:20
1
作者 陈兆凡 赵春阳 李博 《计算机应用研究》 CSCD 北大核心 2020年第S02期293-296,共4页
针对目标检测任务边框回归精度低、模型收敛速度慢的问题,提出一种基于Io U损失的改进边框回归损失函数。为了提高Io U损失函数的精度和速度并保持损失函数的尺度不变性,在Io U损失中引入了归一化距离信息作为惩罚项;为了满足训练前期... 针对目标检测任务边框回归精度低、模型收敛速度慢的问题,提出一种基于Io U损失的改进边框回归损失函数。为了提高Io U损失函数的精度和速度并保持损失函数的尺度不变性,在Io U损失中引入了归一化距离信息作为惩罚项;为了满足训练前期快速收敛和后期高精度要求,在惩罚项中分阶段采用了距离信息的不同范数形式。实验结果表明,改进Io U损失函数在Vis Drone数据集AP50指标和PASCAL VOC数据集m AP指标上达到了34.84%和71.67%的精度,比Io U损失相对提升了4.00%和1.17%,比DIo U回归损失相对提升了1.63%和0.43%,在边框回归任务中取得了更加优越的性能。 展开更多
关键词 目标检测 边框回归损失 IoU损失函数
在线阅读 下载PDF
基于注意力机制与可变卷积神经网络的卫星视频运动目标检测
2
作者 马洲俊 陈锦铭 +1 位作者 刘浩林 张卡 《南京师大学报(自然科学版)》 北大核心 2025年第4期78-86,共9页
视频卫星能获得高空间分辨率的视频信息,为运动目标的检测和分析提供有效数据支撑.然而,由于卫星视频图像中目标像素比例低、纹理细节不清晰、背景复杂等缺点,从卫星视频中检测运动目标存在很大困难.为此,本文以YOLOv8为骨干网络,提出... 视频卫星能获得高空间分辨率的视频信息,为运动目标的检测和分析提供有效数据支撑.然而,由于卫星视频图像中目标像素比例低、纹理细节不清晰、背景复杂等缺点,从卫星视频中检测运动目标存在很大困难.为此,本文以YOLOv8为骨干网络,提出了一种基于注意力机制与可变卷积神经网络的卫星视频运动目标检测算法.首先,设计C2f-DCN模块替换原模型骨干网络中的C2f模块,以提高模型对不同尺度目标的特征提取能力.其次,在检测头前添加Shuffle Attention轻量级注意力机制,在保证模型计算速度的前提下增强重要特征,加强通道间信息沟通提高模型特征融合能力.最后,为了提高模型的学习能力和推理效率,采用Inner-CIoU损失函数,并引入辅助边界框概念来解决卫星视频图像中目标像素比例小的问题.利用SAT-MTB卫星视频影像数据集进行对比实验,实验结果表明本文算法的精确度、召回率、mAP50:95和F1分数分别为75.3%、62.8%、34.9%和68.48,相较于原始YOLOv8n网络,上述指标分别提高了11.6%、4.2%、3.0%和7.44,验证了本文方法的有效性和优越性. 展开更多
关键词 卫星视频 YOLOv8 轻量级注意力机制 可变形卷积 辅助边框回归
在线阅读 下载PDF
特征增强的低照度爆破现场安全帽检测算法
3
作者 王新良 王璐莹 《计算机工程》 北大核心 2025年第3期252-260,共9页
安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先... 安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先,在主干网络使用软池化构建软空间金字塔池化模块(SSPPM),减少了特征映射中的信息弥散,并在下采样映射中保留了更多上下文信息;其次,设计基于高效通道注意力(ECA)机制的高效特征融合模块(EFFM),加强了模型对目标区域特征的学习,提高了特征融合的效率,减少了模型误检情况的出现;再次,采用VariFocalLoss替代BCEWithlogitsLoss,动态调整正负样本的权重,使得模型关注数量较少的正样本,加速了模型的收敛过程,提升了两类目标的检测精度;最后,采用CIoU作为边框回归损失函数,提高了模型定位目标预测框的精度。实验结果表明,所提算法的均值平均精度(mAP)相较于基线算法提升了2.21百分点,每秒处理的图像数量提升了7.67,满足了低照度爆破现场安全帽实时检测的精度和速度需要。 展开更多
关键词 安全帽检测 YOLOX-s算法 注意力机制 边框回归损失函数 置信度损失函数
在线阅读 下载PDF
基于改进YOLOv4的苹果采摘机器人树枝障碍物深度识别 被引量:2
4
作者 黄哲 唐仕喜 +2 位作者 沈冠东 高心悦 王仕廉 《湖北农业科学》 2024年第8期10-16,22,共8页
为识别特征不明显的树枝,尤其是机械手进行苹果采摘时遮挡住苹果位置的树枝,提出了一种结合语义分割和YOLOv4来获取树枝语义骨架,以及识别出树枝位置框的方法。采用语义分割划分树枝矩形包络的方法,剔除影响树枝识别效果的小树枝和分支... 为识别特征不明显的树枝,尤其是机械手进行苹果采摘时遮挡住苹果位置的树枝,提出了一种结合语义分割和YOLOv4来获取树枝语义骨架,以及识别出树枝位置框的方法。采用语义分割划分树枝矩形包络的方法,剔除影响树枝识别效果的小树枝和分支,再用labelImg和labelme工具对数据集进行标注;对训练的网络模型添加了3层最大池化层,并在回归损失方面对YOLOv4的CIOU回归损失函数进行了改进,提出了针对复杂特征、适范围提高预测准确率的置信度相关函数BIOU。结果表明,改进的YOLOv4网络模型训练遮挡苹果位置树枝的F1和AP分别比原始网络训练全部树枝高出20.00个百分点和23.36个百分点,获得训练效果更好的数据集和树枝识别网络。 展开更多
关键词 树枝识别 YOLOv4 语义分割 数据集训练 BIOU边框回归损失函数
在线阅读 下载PDF
近场毫米波三维成像与异物检测方法 被引量:12
5
作者 师君 阙钰佳 +3 位作者 周泽南 周远远 张晓玲 孙铭芳 《雷达学报(中英文)》 CSCD 北大核心 2019年第5期578-588,共11页
主动式毫米波阵列3维成像系统是人体安检成像系统的研究热点,该文对主动式毫米波阵列3维系统工作模式、信号模型和成像算法进行了介绍,并将深度学习中的卷积神经网络(CNN)热图检测方法和边框回归检测技术应用于人体安检成像异物检测。... 主动式毫米波阵列3维成像系统是人体安检成像系统的研究热点,该文对主动式毫米波阵列3维系统工作模式、信号模型和成像算法进行了介绍,并将深度学习中的卷积神经网络(CNN)热图检测方法和边框回归检测技术应用于人体安检成像异物检测。研究表明,基于热图的检测方法和基于YOLO的检测方法均可实现异物检测。基于热图的检测方法网络结构简单、易训练,但由于需要遍历整幅待检测图像,运算时间长,且生成的检测框尺寸固定,无法适应异物尺寸变化。基于YOLO的检测算法网络结构复杂、训练耗时长,但该方法在检测速度与检测框精度上优势明显,更利于机场安检等对实时性要求较高的检测应用。 展开更多
关键词 近场毫米波3维成像 后向投影 卷积神经网络 图像检测 边框回归
在线阅读 下载PDF
基于YOLOv5的红外船舶目标检测算法 被引量:11
6
作者 刘芬 孙杰 +2 位作者 张帅 桑宏强 孙秀军 《红外与激光工程》 EI CSCD 北大核心 2023年第10期214-225,共12页
针对红外船舶目标在海上复杂海天背景下检测困难,且数据集目标大小与锚框不符造成的算法边界回归效果差、检测不准确等问题,提出了一种基于改进YOLOv5的红外船舶目标检测算法。首先针对锚框与数据集目标形状不匹配问题,通过改变K-means+... 针对红外船舶目标在海上复杂海天背景下检测困难,且数据集目标大小与锚框不符造成的算法边界回归效果差、检测不准确等问题,提出了一种基于改进YOLOv5的红外船舶目标检测算法。首先针对锚框与数据集目标形状不匹配问题,通过改变K-means++聚类算法选取簇中心的评价标准,使用中位数代替平均数来决定簇中心,改进了锚框算法,使得锚框与船舶目标更加匹配,提高了算法的平均检测精度。改进后的聚类算法得到的锚框更加符合目标的分布特点。其次针对CIoU(Complete intersection over union)存在梯度爆炸、误检和漏检问题,通过改进边框回归损失函数中关于长宽比的惩罚项提出了MIoU(Multivariate intersection over union)回归损失函数,优化了算法的回归过程,提高了算法的收敛速度和检测精度,避免了相似目标的误检和漏检。改进后的回归损失函数使边框损失降低了1.5%。在红外船舶数据集上进行了消融实验和对比实验,消融实验结果表明文中改进算法的平均检测精度值相较于标准YOLOv5算法提高了1.1%,对比实验结果表明文中改进算法相较于其他改进YOLOv5算法具有更高的平均检测精度,验证了文中改进算法的优越性,提升了红外船舶目标的检测效果。 展开更多
关键词 目标检测 红外船舶目标 聚类算法 边框回归
在线阅读 下载PDF
基于深度学习的生姜种芽快速识别及其朝向判定 被引量:11
7
作者 侯加林 房立发 +2 位作者 吴彦强 李玉华 席芮 《农业工程学报》 EI CAS CSCD 北大核心 2021年第1期213-222,共10页
针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式... 针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式,增加图像的多样性,解决小数据集训练时泛化能力不足的问题;引入DIoU(Distance Intersection over Union)边框回归损失函数来提高种芽识别回归效果;使用基于IoU的K-means聚类方法,经线性尺度缩放得到9个符合种芽尺寸的先验框,减少了先验框带来的误差。最后进行壮芽的选取及其朝向的判定。测试集中的结果表明,该研究提出的生姜种芽识别网络,平均精度和精准率、召回率的加权调和平均值F1分别达到98.2%和94.9%,采用GPU硬件加速后对生姜种芽的检测速度可达112帧/s,比原有YOLO v3网络的平均精度和F1值分别提升1.5%和4.4%,实现了生姜种芽的快速识别及其朝向的判定,为生姜自动化精确播种提供了技术保证。 展开更多
关键词 图像识别 算法 卷积神经网络 生姜种芽 DIoU边框回归损失函数
在线阅读 下载PDF
基于MTCNN和Facenet的人脸识别系统设计 被引量:14
8
作者 李志华 张见雨 魏忠诚 《现代电子技术》 2022年第4期139-143,共5页
由于传统人脸识别系统多采用手工进行特征设定,存在识别精度低、速度慢等缺点,因此文中设计一种基于MTCNN和Facenet的人脸识别系统。采用MTCNN模型进行人脸边框回归,通过三阶级联卷积神经网络对人脸图像进行从粗到细的提取;采用Facenet... 由于传统人脸识别系统多采用手工进行特征设定,存在识别精度低、速度慢等缺点,因此文中设计一种基于MTCNN和Facenet的人脸识别系统。采用MTCNN模型进行人脸边框回归,通过三阶级联卷积神经网络对人脸图像进行从粗到细的提取;采用Facenet模型进行人脸特征向量提取,构建本地人脸特征库;通过比对待识别人脸特征向量与本地人脸特征库中向量间的欧氏距离,输出识别结果。为验证系统性能,从检测速度与检测精度两方面进行测试。实验结果表明,文中所设计的系统识别速度达25 f/s以上,当特征向量间的欧氏距离的阈值设定为0.60时,在数据集LFW上的识别率最高达到99.27%。该系统检测速度满足实时性的同时具有较高的检测精度。 展开更多
关键词 深度学习 卷积神经网络 人脸识别 MTCNN Facenet 系统设计 特征提取 边框回归
在线阅读 下载PDF
YOLOv5目标检测的轻量化研究 被引量:24
9
作者 何雨 田军委 +2 位作者 张震 王沁 赵鹏 《计算机工程与应用》 CSCD 北大核心 2023年第1期92-99,共8页
现有目标检测算法通常存在体积较大、结构复杂等问题,致使室内机器人作业过程中识别速率与精度较差。针对这一问题,以室内目标检测为基础,提出了一种改进的YOLOv5s轻量化检测方法。该方法主要是在YOLOv5s网络的基础上引入ShuffleNet v2... 现有目标检测算法通常存在体积较大、结构复杂等问题,致使室内机器人作业过程中识别速率与精度较差。针对这一问题,以室内目标检测为基础,提出了一种改进的YOLOv5s轻量化检测方法。该方法主要是在YOLOv5s网络的基础上引入ShuffleNet v2特征提取机制来实现网络的轻量化,同时采用加权双向特征金字塔BiFPN和边框回归损失EIOU获取特征信息更为丰富的特征图,来提升目标检测精度,从而得到一种新的室内目标检测模型。研究结果表明,改进后的模型参数量明显减少,模型复杂度减少了46%,平均精确率均值mAP提升到63.9%,实现了轻量化和检测准确率的平衡,该研究为目标轻量化研究提供了参考。 展开更多
关键词 目标检测 YOLOv5s ShuffleNetv2 轻量化 边框回归损失EIOU
在线阅读 下载PDF
多层卷积特征融合的行人检测 被引量:6
10
作者 吕俊奇 邱卫根 +1 位作者 张立臣 李雪武 《计算机工程与设计》 北大核心 2018年第11期3481-3485,共5页
针对小目标以及遮挡严重的场景下的行人目标检测准确率较低的问题,提出一种卷积层信息融合的方法。根据经典卷积神经网络的设计特点,融合不同尺度的卷积特征信息;在此基础上,尝试将目标全局以及局部上下文信息进一步融合。在VOC数据集以... 针对小目标以及遮挡严重的场景下的行人目标检测准确率较低的问题,提出一种卷积层信息融合的方法。根据经典卷积神经网络的设计特点,融合不同尺度的卷积特征信息;在此基础上,尝试将目标全局以及局部上下文信息进一步融合。在VOC数据集以及Brainwash数据集上验证该模型的性能,实验结果表明,这种卷积特征融合对于多尺度的物体以及目标遮挡问题,可有效提升目标检测的准确率。 展开更多
关键词 多尺度特征 深度卷积神经网络 特征融合 目标上下文 边框回归 行人检测
在线阅读 下载PDF
基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法 被引量:75
11
作者 吕石磊 卢思华 +3 位作者 李震 洪添胜 薛月菊 吴奔雷 《农业工程学报》 EI CAS CSCD 北大核心 2019年第17期205-214,共10页
柑橘识别是实现柑橘园果实自动采摘、果树精细化管理以及实现果园产量预测的关键技术环节。为实现自然环境下柑橘果实的快速精准识别,该文提出一种基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法。在采摘机器人领域,果实识别回归框... 柑橘识别是实现柑橘园果实自动采摘、果树精细化管理以及实现果园产量预测的关键技术环节。为实现自然环境下柑橘果实的快速精准识别,该文提出一种基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法。在采摘机器人领域,果实识别回归框的准确率直接决定了机器手的采摘成功率,该方法通过引入GIoU边框回归损失函数来提高果实识别回归框准确率;为便于迁移到移动终端,提出一种YOLOv3-LITE轻量级网络模型,使用MobileNet-v2作为模型的骨干网络;使用混合训练与迁移学习结合的预训练方式来提高模型的泛化能力。通过与Faster-RCNN以及SSD模型对比在不同遮挡程度的测试样本下模型的识别效果,用F1值与AP值评估各模型的差异,试验结果表明:该文提出的模型识别效果提升显著,对于果实轻度遮挡的数据集,该文提出的柑橘识别模型的F1值和AP值分别为95.27%和92.75%,AverageIoU为88.65%;在全部测试集上,F1值和AP值分别为93.69%和91.13%,Average IoU为87.32%,在GPU上对柑橘目标检测速度可达246帧/s,对单张416×416的图片推断速度为16.9 ms,在CPU上检测速度可达22帧/s,推断速度为80.9 ms,模型占用内存为28 MB。因此,该文提出的柑橘识别方法具有模型占用内存低、识别准确率高及识别速度快等优点,可为柑橘采摘机器人以及柑橘产业产量预测提出新的解决方案,为柑橘产业智能化提供新的思路。 展开更多
关键词 神经网络 果树 算法 柑橘 YOLOv3-LITE 混合训练 迁移学习 GIoU边框回归损失函数
在线阅读 下载PDF
基于集成学习与位置信息约束的前方车辆检测 被引量:2
12
作者 耿磊 彭晓帅 +2 位作者 肖志涛 李秀艳 甘鹏 《计算机工程与科学》 CSCD 北大核心 2018年第10期1844-1850,共7页
针对传统前方车辆检测方法难以同时满足准确性与实时性问题,提出一种结合AdaBoost集成学习与位置信息约束的车辆检测方法。首先,利用Edge Boxes算法根据车辆边缘序列信息计算推荐窗口。然后,通过帧存坐标系中车辆位置信息对非目标推荐... 针对传统前方车辆检测方法难以同时满足准确性与实时性问题,提出一种结合AdaBoost集成学习与位置信息约束的车辆检测方法。首先,利用Edge Boxes算法根据车辆边缘序列信息计算推荐窗口。然后,通过帧存坐标系中车辆位置信息对非目标推荐窗口进行排除。最后,将过滤后窗口聚类处理并择优选取作为AdaBoost分类器输入,进行检测评判,并对最终检测结果进行边框回归处理,以提升检测精准度。实验结果表明,该方法对于不同检测场景有较强鲁棒性,能够同时满足车辆检测的准确性与实时性要求。 展开更多
关键词 前方车辆检测 集成学习 位置信息 边框回归
在线阅读 下载PDF
基于R-CNN算法的海上船只的检测与识别 被引量:6
13
作者 张新 郭福亮 +1 位作者 梁英杰 陈修亮 《计算机应用研究》 CSCD 北大核心 2020年第S01期314-315,319,共3页
针对海上的船只目标,采用深度学习目标分类算法中的R-CNN(region with CNN)算法对其进行分类检测与识别。将实验中的船只数据分为货船、邮轮和游艇三类,通过调整优化神经网络中的迭代次数、批处理尺寸等参数,使神经网络识别准确率达到80... 针对海上的船只目标,采用深度学习目标分类算法中的R-CNN(region with CNN)算法对其进行分类检测与识别。将实验中的船只数据分为货船、邮轮和游艇三类,通过调整优化神经网络中的迭代次数、批处理尺寸等参数,使神经网络识别准确率达到80.98%。同时将该神经网络用于图像特征提取,使R-CNN的mAP值达到48.88%。同时应用soft-NMS对R-CNN算法进行改进,改进后的R-CNN算法的m AP值达到51%,要好于之前的算法。相比于传统的机器学习目标检测识别算法,基于深度学习的目标检测识别算法拥有更高的检测准确度和执行效率。实验结果表明,该算法可以有效地实现海上船只的检测与识别。 展开更多
关键词 深度学习 R-CNN 船舶检测 选择性搜索 边框回归
在线阅读 下载PDF
高精度配电网电气设备故障识别检测方法 被引量:39
14
作者 赵欢 阳浩 +2 位作者 何亮 魏恩伟 郑杰 《沈阳工业大学学报》 CAS 北大核心 2021年第6期614-618,共5页
针对电气设备红外图像边界模糊、噪声大等问题,结合卷积神经网络模型和图像识别技术,利用可见光图像与红外成像,实现了对配电网电气设备的高精度远程识别和发热诊断.采用卷积神经网络和边框回归算法完成了对识别对象的标记,基于灰度梯... 针对电气设备红外图像边界模糊、噪声大等问题,结合卷积神经网络模型和图像识别技术,利用可见光图像与红外成像,实现了对配电网电气设备的高精度远程识别和发热诊断.采用卷积神经网络和边框回归算法完成了对识别对象的标记,基于灰度梯度信息矩阵提取了配电网红外图像的纹理信息特征参数,采用主成分分析的方法得到特征参数的主成分分量,并将其作为输入向量,对设备运行状态进行识别.结果表明,样本训练及测试的准确率能够分别达到95%、90%以上,设备发热故障识别准确率约为85%. 展开更多
关键词 卷积神经网络 图像识别 红外成像 灰度梯度信息矩阵 主成分分析 故障识别 边框回归算法 对象识别
在线阅读 下载PDF
基于孪生卷积神经网络的人脸追踪 被引量:11
15
作者 吴汉钊 《计算机工程与应用》 CSCD 北大核心 2018年第14期175-179,共5页
由于光照、遮挡、尺度变化等原因,在真实多变场景下完成人脸追踪面临挑战。探究了基于卷积神经网络(CNN)的人脸追踪,将基本的卷积神经网络改进为孪生神经网络,在OTB数据集上采用端到端的方式,以成对图像区域作为输入,输出两者距离,通过... 由于光照、遮挡、尺度变化等原因,在真实多变场景下完成人脸追踪面临挑战。探究了基于卷积神经网络(CNN)的人脸追踪,将基本的卷积神经网络改进为孪生神经网络,在OTB数据集上采用端到端的方式,以成对图像区域作为输入,输出两者距离,通过距离评估图像区域相似性;加入边框回归算法(bounding box regression)微调追踪结果。实验结果表明,改进后的神经网络优于传统的卷积神经网络,能达到更好的人脸追踪效果。 展开更多
关键词 深度学习 卷积神经网络 人脸追踪 边框回归
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部