期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
辛几何模态分解方法及其分解能力研究 被引量:12
1
作者 程正阳 王荣吉 潘海洋 《振动与冲击》 EI CSCD 北大核心 2020年第13期27-35,共9页
针对经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、局部特征尺度分解(Local Characteristic scale Decomposition,LCD)等方法的不足,提出了一种新的分析方法--辛... 针对经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、局部特征尺度分解(Local Characteristic scale Decomposition,LCD)等方法的不足,提出了一种新的分析方法--辛几何模态分解(Symplectic Geometry Mode Decomposition,SGMD)方法,该方法采用辛矩阵相似变换求解Hamilton矩阵的特征值,并利用其对应的特征向量重构辛几何分量(Symplectic Geometry Component,SGC),从而对复杂信号去噪的同时进行自适应分解,得到若干个SGC。通过仿真信号模型,研究了SGMD方法的分解性能、噪声鲁棒性,分析了分量信号的频率比、幅值比和初相位差对SGMD方法分解能力的影响。将SGMD方法应用于齿轮故障实验数据分析,结果表明SGMD方法能够有效地对待分解信号完成分解并剔除噪声信号。 展开更多
关键词 几何模态分解(SGMD) 辛矩阵相似变换 几何分量(SGC) 分解能力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部