期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
4
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv8的煤矿输送带异物检测
被引量:
4
1
作者
洪炎
汪磊
+2 位作者
苏静明
汪瀚涛
李木石
《工矿自动化》
CSCD
北大核心
2024年第6期61-69,共9页
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8...
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA)机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7-tiny等主流目标检测算法。
展开更多
关键词
输送带异物检测
YOLOv8
SE网络
高效通道注意力机制
轻量化
小目标
检测
自适应平均池化
自适应最大池化
在线阅读
下载PDF
职称材料
基于Stair−YOLOv7−tiny的煤矿井下输送带异物检测
2
作者
梅晓虎
吕小强
雷萌
《工矿自动化》
CSCD
北大核心
2024年第8期99-104,111,共7页
针对现有煤矿井下输送带异物检测方法应对复杂场景适应性差、无法满足实时性和轻量化要求、处理尺寸差异较大异物时表现不佳的问题,基于轻量化YOLOv7−tiny模型进行改进,提出了一种Stair−YOLOv7−tiny模型,并将其用于煤矿井下输送带异物...
针对现有煤矿井下输送带异物检测方法应对复杂场景适应性差、无法满足实时性和轻量化要求、处理尺寸差异较大异物时表现不佳的问题,基于轻量化YOLOv7−tiny模型进行改进,提出了一种Stair−YOLOv7−tiny模型,并将其用于煤矿井下输送带异物检测。该模型在高效层聚合网络(ELAN)模块中添加特征拼接单元,形成阶梯ELAN(Stair−ELAN)模块,将不同层级的低维特征与高维特征进行融合,加强了特征层级间的直接联系,提升了信息捕获能力,增强了模型对不同尺度目标和复杂场景的适应性;针对检测头引入阶梯特征融合(Stair−fusion),形成阶梯检测头(Stair−head)模块,通过逐层融合不同分辨率的检测头特征,增强了中低分辨率检测头的特征表达能力,实现了特征信息的互补。实验结果表明:Stair−YOLOv7−tiny模型在输送带异物开源数据集CUMT−BelT上的检测效果优于CBAM−YOLOv5,YOLOv7−tiny及其轻量化模型,准确率、平均精度均值、召回率和精确率分别达98.5%,81.0%,82.2%和88.4%,检测速度为192.3帧/s;在某矿井下输送带监控视频分析中,Stair−YOLOv7−tiny模型未出现漏检或误检,实现了输送带异物的准确检测。
展开更多
关键词
输送带异物检测
YOLOv7−tiny
多尺度目标
检测
Stair−fusion
高效层聚合网络
检测
头
在线阅读
下载PDF
职称材料
基于改进YOLOv8的煤矿输送带异物目标检测方法研究
被引量:
1
3
作者
吴胜
《选煤技术》
CAS
2024年第3期29-34,共6页
现有煤矿输送带异物目标检测方法所提出的网络结构复杂,而且选煤厂入煤工段和矿井运输工段的输送带光照强度低,存在粉尘等微小颗粒物的干扰,检测精度和检测效率均难以满足实际工况要求。为解决上述问题,文章构建了融合轻量化网络的改进Y...
现有煤矿输送带异物目标检测方法所提出的网络结构复杂,而且选煤厂入煤工段和矿井运输工段的输送带光照强度低,存在粉尘等微小颗粒物的干扰,检测精度和检测效率均难以满足实际工况要求。为解决上述问题,文章构建了融合轻量化网络的改进YOLOv8检测算法——YOLOv8-MobileNetV1。该模型以YOLOv8为基础,将传统的C2F卷积层替换为轻量化网络MobileNetV1来减少模型的参数量;将传统的空间金字塔池化层修改为大核金字塔池化层,以进一步提升模型的性能和泛化能力;同时融合CVH注意力机制模块来提高网络深层次信息的提取能力,从而提高煤矿输送带运输过程中的异物识别精度和检测效率。为验证该模型的有效性,自行构建了选煤厂和矿井输送带运输过程中常见异物(大块和锚杆)的数据集,并按照8∶1∶1的比例随机划分为训练集、验证集和测试集,从检测精度和检测效率两方面进行评价。实验结果表明:YOLOv8-MobileNetV1算法的大块和锚杆的目标检测精度为81.30%和89.46%,平均检测精度达到了85.38%,帧率为83.5 fps。相较于传统的目标检测算法,YOLOv8-MobileNetV1算法提高了煤矿输送带异物目标检测精度和检测效率,满足了实际工况所需的准确性和时效性,为煤矿安全生产做出了保障。
展开更多
关键词
异物
目标
检测
煤矿
输送带
异物
目标
检测
方法
改进YOLOv8
轻量化网络
注意力机制
平均
检测
精度
帧率
在线阅读
下载PDF
职称材料
基于双目视觉的选煤厂用胶带输送机表面异物检测
被引量:
2
4
作者
沈宁
《工矿自动化》
CSCD
北大核心
2023年第S01期82-85,共4页
目前所采用的选煤厂用胶带输送机表面异物检测方法在实际应用时,由于选煤厂内外因素影响,导致对于不同类别的异物识别和分类精度低。针对该问题,提出一种基于双目视觉的选煤厂用胶带输送机表面异物检测方法。设计了基于双目视觉的输送...
目前所采用的选煤厂用胶带输送机表面异物检测方法在实际应用时,由于选煤厂内外因素影响,导致对于不同类别的异物识别和分类精度低。针对该问题,提出一种基于双目视觉的选煤厂用胶带输送机表面异物检测方法。设计了基于双目视觉的输送带异物检测装置,将摄像机与工业相机组合成双目视觉系统,系统采集图像后,利用中值滤波算法对图像进行去噪,获取稳定的图像信息。采用YOLOv3进行异物识别预测,计算边界框和锚框数值信息,并根据上述数值信息调整计算定位准确度,实现异物检测。实验结果表明:与传统的基于Mask_R-CN的检测方法相比,提出的方法对胶带输送机表面异物的识别筛选准确率超过96.2%,分类准确率超过97.6%。
展开更多
关键词
选煤厂用胶带
输送
机
双目视觉
输送带异物检测
工业相机
YOLOv3
在线阅读
下载PDF
职称材料
题名
基于改进YOLOv8的煤矿输送带异物检测
被引量:
4
1
作者
洪炎
汪磊
苏静明
汪瀚涛
李木石
机构
安徽理工大学电气与信息工程学院
出处
《工矿自动化》
CSCD
北大核心
2024年第6期61-69,共9页
基金
国家重点研发计划项目(2021YFD2000204)
国家自然科学基金项目(12304236,32301688,52174141)
+2 种基金
安徽数字农业工程技术研究中心开放项目(AHSZNYGCZXKF021)
大学生创新创业基金项目(202210361053,202310361037)
安徽理工大学研究生创新基金项目(2024cx2067)。
文摘
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA)机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7-tiny等主流目标检测算法。
关键词
输送带异物检测
YOLOv8
SE网络
高效通道注意力机制
轻量化
小目标
检测
自适应平均池化
自适应最大池化
Keywords
foreign object detection on conveyor belts
YOLOv8
SE network
efficient channel attention mechanism
lightweight
small object detection
adaptive average pooling
adaptive maximum pooling
分类号
TD634.1 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
基于Stair−YOLOv7−tiny的煤矿井下输送带异物检测
2
作者
梅晓虎
吕小强
雷萌
机构
国家能源集团宁夏煤业有限责任公司枣泉煤矿
天地(常州)自动化股份有限公司
中国矿业大学信息与控制工程学院
出处
《工矿自动化》
CSCD
北大核心
2024年第8期99-104,111,共7页
基金
国家自然科学基金青年科学基金项目(51904197)
天地(常州)自动化股份有限公司科研项目(2022FY0009)。
文摘
针对现有煤矿井下输送带异物检测方法应对复杂场景适应性差、无法满足实时性和轻量化要求、处理尺寸差异较大异物时表现不佳的问题,基于轻量化YOLOv7−tiny模型进行改进,提出了一种Stair−YOLOv7−tiny模型,并将其用于煤矿井下输送带异物检测。该模型在高效层聚合网络(ELAN)模块中添加特征拼接单元,形成阶梯ELAN(Stair−ELAN)模块,将不同层级的低维特征与高维特征进行融合,加强了特征层级间的直接联系,提升了信息捕获能力,增强了模型对不同尺度目标和复杂场景的适应性;针对检测头引入阶梯特征融合(Stair−fusion),形成阶梯检测头(Stair−head)模块,通过逐层融合不同分辨率的检测头特征,增强了中低分辨率检测头的特征表达能力,实现了特征信息的互补。实验结果表明:Stair−YOLOv7−tiny模型在输送带异物开源数据集CUMT−BelT上的检测效果优于CBAM−YOLOv5,YOLOv7−tiny及其轻量化模型,准确率、平均精度均值、召回率和精确率分别达98.5%,81.0%,82.2%和88.4%,检测速度为192.3帧/s;在某矿井下输送带监控视频分析中,Stair−YOLOv7−tiny模型未出现漏检或误检,实现了输送带异物的准确检测。
关键词
输送带异物检测
YOLOv7−tiny
多尺度目标
检测
Stair−fusion
高效层聚合网络
检测
头
Keywords
conveyor belt foreign object detection
YOLOv7-tiny
multi scale object detection
stair feature fusion
efficient layer aggregation network
detection head
分类号
TD528 [矿业工程—矿山机电]
TD634 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
基于改进YOLOv8的煤矿输送带异物目标检测方法研究
被引量:
1
3
作者
吴胜
机构
盘江精煤股份有限公司火烧铺煤矿
出处
《选煤技术》
CAS
2024年第3期29-34,共6页
文摘
现有煤矿输送带异物目标检测方法所提出的网络结构复杂,而且选煤厂入煤工段和矿井运输工段的输送带光照强度低,存在粉尘等微小颗粒物的干扰,检测精度和检测效率均难以满足实际工况要求。为解决上述问题,文章构建了融合轻量化网络的改进YOLOv8检测算法——YOLOv8-MobileNetV1。该模型以YOLOv8为基础,将传统的C2F卷积层替换为轻量化网络MobileNetV1来减少模型的参数量;将传统的空间金字塔池化层修改为大核金字塔池化层,以进一步提升模型的性能和泛化能力;同时融合CVH注意力机制模块来提高网络深层次信息的提取能力,从而提高煤矿输送带运输过程中的异物识别精度和检测效率。为验证该模型的有效性,自行构建了选煤厂和矿井输送带运输过程中常见异物(大块和锚杆)的数据集,并按照8∶1∶1的比例随机划分为训练集、验证集和测试集,从检测精度和检测效率两方面进行评价。实验结果表明:YOLOv8-MobileNetV1算法的大块和锚杆的目标检测精度为81.30%和89.46%,平均检测精度达到了85.38%,帧率为83.5 fps。相较于传统的目标检测算法,YOLOv8-MobileNetV1算法提高了煤矿输送带异物目标检测精度和检测效率,满足了实际工况所需的准确性和时效性,为煤矿安全生产做出了保障。
关键词
异物
目标
检测
煤矿
输送带
异物
目标
检测
方法
改进YOLOv8
轻量化网络
注意力机制
平均
检测
精度
帧率
Keywords
detection of foreign object
method for detection of foreign objects on belt conveyor
improved YOLOv8
lightweight network
attention mechanism
average detection accuracy
frame rate
分类号
TD948.7 [矿业工程—选矿]
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于双目视觉的选煤厂用胶带输送机表面异物检测
被引量:
2
4
作者
沈宁
机构
国家能源集团宁夏煤业有限责任公司洗选中心
出处
《工矿自动化》
CSCD
北大核心
2023年第S01期82-85,共4页
文摘
目前所采用的选煤厂用胶带输送机表面异物检测方法在实际应用时,由于选煤厂内外因素影响,导致对于不同类别的异物识别和分类精度低。针对该问题,提出一种基于双目视觉的选煤厂用胶带输送机表面异物检测方法。设计了基于双目视觉的输送带异物检测装置,将摄像机与工业相机组合成双目视觉系统,系统采集图像后,利用中值滤波算法对图像进行去噪,获取稳定的图像信息。采用YOLOv3进行异物识别预测,计算边界框和锚框数值信息,并根据上述数值信息调整计算定位准确度,实现异物检测。实验结果表明:与传统的基于Mask_R-CN的检测方法相比,提出的方法对胶带输送机表面异物的识别筛选准确率超过96.2%,分类准确率超过97.6%。
关键词
选煤厂用胶带
输送
机
双目视觉
输送带异物检测
工业相机
YOLOv3
分类号
TD634 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv8的煤矿输送带异物检测
洪炎
汪磊
苏静明
汪瀚涛
李木石
《工矿自动化》
CSCD
北大核心
2024
4
在线阅读
下载PDF
职称材料
2
基于Stair−YOLOv7−tiny的煤矿井下输送带异物检测
梅晓虎
吕小强
雷萌
《工矿自动化》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
3
基于改进YOLOv8的煤矿输送带异物目标检测方法研究
吴胜
《选煤技术》
CAS
2024
1
在线阅读
下载PDF
职称材料
4
基于双目视觉的选煤厂用胶带输送机表面异物检测
沈宁
《工矿自动化》
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部