期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Cascade R-CNN的输电线路多目标检测
被引量:
23
1
作者
李鑫
刘帅男
+1 位作者
杨桢
王珂珂
《电子测量与仪器学报》
CSCD
北大核心
2021年第10期24-32,共9页
针对无人机巡检图像中小目标难以检测、障碍物遮挡目标、正负样本不平衡等问题,提出基于改进Cascade R-CNN的输电线路多目标检测方法。改进了Cascade R-CNN的特征提取网络,基于ResNet101基础网络结构,设计6层新型特征金字塔网络(FPN)与...
针对无人机巡检图像中小目标难以检测、障碍物遮挡目标、正负样本不平衡等问题,提出基于改进Cascade R-CNN的输电线路多目标检测方法。改进了Cascade R-CNN的特征提取网络,基于ResNet101基础网络结构,设计6层新型特征金字塔网络(FPN)与之融合,提高了对小目标、重叠目标的检测能力;引入了高斯形式的软非极大值抑制(Soft-NMS)方法,降低了受遮挡影响的目标的漏检率;利用Focal损失改进损失函数,缓解了正负样本不平衡对检测精度的影响。训练过程中,基于添加噪声、亮度变换、尺度放缩等数据增强方法扩充数据集,提升了训练模型的泛化性能。实验结果表明,改进的模型在复杂背景下能够对3种瓷质绝缘子、瓷质绝缘子缺陷、相间棒、防震锤以及鸟窝同时检测,平均精度均值(mAP)达到94.1%,为输电线路的智能巡检提供了一种新思路。
展开更多
关键词
输电线路多目标检测
Cascade
R-CNN
深度学习
特征融合
在线阅读
下载PDF
职称材料
题名
基于改进Cascade R-CNN的输电线路多目标检测
被引量:
23
1
作者
李鑫
刘帅男
杨桢
王珂珂
机构
辽宁工程技术大学电气与控制工程学院
南京电子技术研究所
出处
《电子测量与仪器学报》
CSCD
北大核心
2021年第10期24-32,共9页
基金
辽宁省教育厅科学研究经费项目(LJ2019JL013,LJ2020JCL020,LJ2019QL011)
辽宁工程技术大学学科创新团队(LNTU20TD-29)项目资助。
文摘
针对无人机巡检图像中小目标难以检测、障碍物遮挡目标、正负样本不平衡等问题,提出基于改进Cascade R-CNN的输电线路多目标检测方法。改进了Cascade R-CNN的特征提取网络,基于ResNet101基础网络结构,设计6层新型特征金字塔网络(FPN)与之融合,提高了对小目标、重叠目标的检测能力;引入了高斯形式的软非极大值抑制(Soft-NMS)方法,降低了受遮挡影响的目标的漏检率;利用Focal损失改进损失函数,缓解了正负样本不平衡对检测精度的影响。训练过程中,基于添加噪声、亮度变换、尺度放缩等数据增强方法扩充数据集,提升了训练模型的泛化性能。实验结果表明,改进的模型在复杂背景下能够对3种瓷质绝缘子、瓷质绝缘子缺陷、相间棒、防震锤以及鸟窝同时检测,平均精度均值(mAP)达到94.1%,为输电线路的智能巡检提供了一种新思路。
关键词
输电线路多目标检测
Cascade
R-CNN
深度学习
特征融合
Keywords
multi-objective identification of transmission lines
Cascade R-CNN
deep learning
feature fusion
分类号
TM75 [电气工程—电力系统及自动化]
TN06 [电子电信—物理电子学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Cascade R-CNN的输电线路多目标检测
李鑫
刘帅男
杨桢
王珂珂
《电子测量与仪器学报》
CSCD
北大核心
2021
23
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部