期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度卷积神经网络的泌尿系结石成分输尿管镜图像诊断模型构建
1
作者 陈琼秋 孔祥辉 +4 位作者 陈合益 方崇国 陈武 陈大可 徐晓敏 《浙江临床医学》 2025年第2期243-246,共4页
目的采用深度卷积神经网络(CNN)构建用于诊断泌尿系结石成分的输尿管镜(URS)图像分析模型。方法收集2022年1月至2024年7月本院800例接受泌尿系结石URS手术治疗患者的资料,经过筛选,最终获得2475张高质量URS图像数据,随机分为训练集(70%... 目的采用深度卷积神经网络(CNN)构建用于诊断泌尿系结石成分的输尿管镜(URS)图像分析模型。方法收集2022年1月至2024年7月本院800例接受泌尿系结石URS手术治疗患者的资料,经过筛选,最终获得2475张高质量URS图像数据,随机分为训练集(70%)和测试集(30%)。采用在ImageNet数据集上预训练的Inception v3、ResNet50、AlexNet、VGG 19、DenseNet等网络架构,通过迁移学习技术构建了泌尿系结石成分分析模型。此外,还比较各模型的分类性能,并与泌尿外科医师在术中URS下的评估结果进行对比。结果在训练集和测试集上对构建的泌尿系结石成分URS图像诊断模型进行评估发现,Inception v3、ResNet50、AlexNet、VGG 19、DenseNet模型均具有较高的分类能力。其中Inception v3模型表现最佳,具有最高的准确度(训练集98.10%,测试集98.00%)、AUC值(训练集0.852,测试集0.834)、特异度(训练集82.42%,测试集81.37%)及敏感度(训练集88.36%,测试集86.43%)。一致性检验结果表明,各泌尿系结石成分URS图像诊断模型与医师经验诊断具有较好的一致性,并且Inception v3模型的分类一致性最佳(P<0.001)。结论深度学习技术在泌尿系结石成分诊断中显示出一定的应用潜力。基于CNN构建的泌尿系结石成分URS图像诊断模型具有较好的分类能力,可用于预测泌尿系结石成分。 展开更多
关键词 深度卷积神经网络 泌尿系结石 输尿管镜图像 诊断模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部