期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
极端气象条件下基于深度学习网络特征的变压器故障预测 被引量:4
1
作者 龙玉江 姜超颖 +1 位作者 钟掖 田月炜 《现代电子技术》 北大核心 2024年第4期91-96,共6页
根据极端气象条件下变压器产生故障时的环境参数,结合变压器故障预测中常用的油中溶解气体的含量,提出一种基于深度学习网络的故障预测方法。针对已有的变压器故障诊断方法泛化能力弱、时效性低、精度低等缺点,引入极端气象参数,并通过... 根据极端气象条件下变压器产生故障时的环境参数,结合变压器故障预测中常用的油中溶解气体的含量,提出一种基于深度学习网络的故障预测方法。针对已有的变压器故障诊断方法泛化能力弱、时效性低、精度低等缺点,引入极端气象参数,并通过对多组数据序列进行时因分析,提取数据随着时间的变化关系;其次,设计一种新型的神经网络,将油气参数与极端气象参数的时间特征融合,并通过深度学习网络进行故障分类与预测。仿真实验结果表明,相比于其他传统故障预测方法,所提出的极端气象条件下基于深度学习网络的变压器故障预测方法准确率有显著提高。 展开更多
关键词 输变电变压器 故障预测 深度学习 卷积神经网络 极端气象 故障分类 溶解气体分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部