该文提出一种适用于双有源桥结构(dual active bridge,DAB)构成的输入串联输出并联(input series output parallel,ISOP)DC-DC变换器的电磁暂态等效建模方法。现有电力电子变换器常将ISOP型DAB变换器作为中间环节,但由于DAB单元和ISOP...该文提出一种适用于双有源桥结构(dual active bridge,DAB)构成的输入串联输出并联(input series output parallel,ISOP)DC-DC变换器的电磁暂态等效建模方法。现有电力电子变换器常将ISOP型DAB变换器作为中间环节,但由于DAB单元和ISOP结构的复杂性,导致电磁暂态精确仿真的仿真效率极低。为此,文中提出一种适用于DAB构成的ISOP型DC-DC变换器的等效建模方法。具体而言,采用梯形积分法将各DAB单元组成元件离散化,并通过对变压器的分析,将变压器解耦,再利用嵌套快速求解法消去DAB单元内部节点和串并联节点,使得整个DAB变换器等效为仅包含4个外部节点的戴维南(诺顿)等效电路。在完成一个步长的电磁暂态求解后,可随后进行内部节点信息如各DAB单元输出电流的更新。在PSCAD/EMTDC环境中验证所提出模型的精度和加速比,结果表明,提出的等效建模方法可以精确仿真系统稳态与暂态过程,且可以很大程度提高电磁暂态仿真效率。展开更多
输入串联输出并联型(input-series output-parallel,ISOP)直流变换器广泛应用于能源互联网中的直流电网场景,其关键问题在于解决系统模块间输入电压不均衡。为此,结合谐振型和移相型双有源桥(dual active bridge,DAB)变换器,提出一种具...输入串联输出并联型(input-series output-parallel,ISOP)直流变换器广泛应用于能源互联网中的直流电网场景,其关键问题在于解决系统模块间输入电压不均衡。为此,结合谐振型和移相型双有源桥(dual active bridge,DAB)变换器,提出一种具备自适应均压能力的混合型模块化ISOP型直流变换器,系统同时具备谐振型DAB的高效率和移相型DAB的灵活控制能力。通过在DAB源端的滞后桥臂中点增设无源的LC谐振支路,该谐振支路与相邻子模块的2个半桥模块共同构成非隔离型双有源半桥,以此来实现系统输入电压的自适应均衡。此外,提出一种低电压穿越(low voltage ride-through,LVRT)方法,在DAB前端连接电压调整模块,模块内部的高频变压器的副边串联电感,当系统输入输出侧发生电压跌落时具备故障穿越的能力,提高系统的暂态可控性。最后,在MATLAB/SIMULINK环境下搭建模型进行验证,可以证明系统的自适应均压性能及故障穿越方法的有效性。展开更多
文摘该文提出一种适用于双有源桥结构(dual active bridge,DAB)构成的输入串联输出并联(input series output parallel,ISOP)DC-DC变换器的电磁暂态等效建模方法。现有电力电子变换器常将ISOP型DAB变换器作为中间环节,但由于DAB单元和ISOP结构的复杂性,导致电磁暂态精确仿真的仿真效率极低。为此,文中提出一种适用于DAB构成的ISOP型DC-DC变换器的等效建模方法。具体而言,采用梯形积分法将各DAB单元组成元件离散化,并通过对变压器的分析,将变压器解耦,再利用嵌套快速求解法消去DAB单元内部节点和串并联节点,使得整个DAB变换器等效为仅包含4个外部节点的戴维南(诺顿)等效电路。在完成一个步长的电磁暂态求解后,可随后进行内部节点信息如各DAB单元输出电流的更新。在PSCAD/EMTDC环境中验证所提出模型的精度和加速比,结果表明,提出的等效建模方法可以精确仿真系统稳态与暂态过程,且可以很大程度提高电磁暂态仿真效率。
文摘输入串联输出并联型(input-series output-parallel,ISOP)直流变换器广泛应用于能源互联网中的直流电网场景,其关键问题在于解决系统模块间输入电压不均衡。为此,结合谐振型和移相型双有源桥(dual active bridge,DAB)变换器,提出一种具备自适应均压能力的混合型模块化ISOP型直流变换器,系统同时具备谐振型DAB的高效率和移相型DAB的灵活控制能力。通过在DAB源端的滞后桥臂中点增设无源的LC谐振支路,该谐振支路与相邻子模块的2个半桥模块共同构成非隔离型双有源半桥,以此来实现系统输入电压的自适应均衡。此外,提出一种低电压穿越(low voltage ride-through,LVRT)方法,在DAB前端连接电压调整模块,模块内部的高频变压器的副边串联电感,当系统输入输出侧发生电压跌落时具备故障穿越的能力,提高系统的暂态可控性。最后,在MATLAB/SIMULINK环境下搭建模型进行验证,可以证明系统的自适应均压性能及故障穿越方法的有效性。