期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
洪水作用下车辆稳定性试验与安全标准 被引量:2
1
作者 肖学 李传奇 +3 位作者 马梦蝶 杨幸子 崔佳伟 杨红林 《科学技术与工程》 北大核心 2017年第33期200-206,共7页
对洪水作用下车辆失稳时的受力情况进行分析,推导出车辆失稳临界条件方程,并结合三款不同型号1∶18的车辆模型渡槽试验,确定方程中拖曳力系数、摩擦力系数、淹没深度与排开水质量关系。根据流动相似原理计算原型车辆失稳的临界水深-流... 对洪水作用下车辆失稳时的受力情况进行分析,推导出车辆失稳临界条件方程,并结合三款不同型号1∶18的车辆模型渡槽试验,确定方程中拖曳力系数、摩擦力系数、淹没深度与排开水质量关系。根据流动相似原理计算原型车辆失稳的临界水深-流速关系,并以此提出了车辆部分淹没时"大中小"车型的多层次安全标准。研究结果表明:随着水流流速增大,失稳临界水深变小,且流速-水深曲线"凹凸性"发生变化;随着车辆部分淹没水深增加,不同来流情况的临界流速逐渐趋近;同款车型在相同的水深条件下,侧向来流比正向来流更容易失稳;三车并列时稳定性介于侧向来流和正向来流之间;路面坡度越大,车辆越容易失稳;质量越大,车辆稳定性越好。 展开更多
关键词 辆稳定性 洪水作用 部分淹没 滑移临界条件 模型试验 拖曳力系数
在线阅读 下载PDF
Control allocation algorithm for over-actuated electric vehicles 被引量:2
2
作者 冯冲 丁能根 +2 位作者 何勇灵 徐国艳 高峰 《Journal of Central South University》 SCIE EI CAS 2014年第10期3705-3712,共8页
A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to impro... A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to improve the vehicle stability. The control algorithm was developed using a two-degree-of-freedom(DOF) vehicle model. A pseudo control vector was calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocated the control inputs which included driving torques and steering angles of the four wheels according to the pseudo control vector. If one or more actuators were saturated or in a failure state, the control inputs are re-allocated by the algorithm. The algorithm was evaluated in Matlab/Simulink by using an 8-DOF nonlinear vehicle model. Simulations of sinusoidal input maneuver and double lane change maneuver were executed and the results were compared with those for a sliding mode control. The simulation results show that the vehicle controlled by the control allocation algorithm has better stability and trajectory-tracking performance than the vehicle controlled by the sliding mode control. The vehicle controlled by the control allocation algorithm still has good handling and stability when one or more actuators are saturated or in a failure situation. 展开更多
关键词 over-actuated system pseudo-inverse control control allocation sliding mode vehicle stability
在线阅读 下载PDF
Map-based control method for vehicle stability enhancement 被引量:2
3
作者 Moon-Young Yoon Seung-Hwan Baek +1 位作者 Kwang-Suk Boo Heung-Seob Kim 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期114-120,共7页
This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-r... This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control. 展开更多
关键词 model-referenced control map-based control vehicle stability yaw moment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部