期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于类小波辅助分类生成对抗网络的轴承故障数据生成方法
1
作者 焦华超 孙文磊 王宏伟 《中国机械工程》 北大核心 2025年第3期546-557,共12页
利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分... 利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分类生成对抗网络。基于小波变换原理,使用多层神经网络构建类小波变换(WLT)网络,模拟小波变换及逆变换,建立时域与频域信号的映射关系;将WLT网络嵌入辅助分类生成对抗网络(ACGAN)模型中,作为模型生成器的主体;构建两个不同功能的判别器,使得改进的ACGAN在一次训练中能同时学到真实轴承振动信号的时域和频域特征信息。试验结果表明,WLT-ACGAN模型生成的轴承振动信号具有与真实轴承振动信号一致的时域特征和频域特征,数据不平衡时,利用生成信号扩增的平衡数据集构建的故障诊断模型具有较高的准确率。 展开更多
关键词 辅助分类生成对抗网络 类小波变换 轴承故障诊断 数据生成
在线阅读 下载PDF
基于多判别器辅助分类器生成对抗网络的故障诊断方法研究 被引量:2
2
作者 叶子汉 王中华 +2 位作者 姜潮 吕新 张哲 《工程设计学报》 CSCD 北大核心 2024年第2期137-150,159,共15页
在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分... 在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分类器生成对抗网络的数据增强算法。通过设置3个判别器、1个生成器并添加独立的分类器,构建了新的辅助分类器生成对抗网络模型。针对在该模型训练中存在的不稳定性问题,通过引入Wasserstein距离构造新的损失函数,并采用稳定性更具优势的单边软约束正则化项替换原有的L2梯度惩罚项来解决模型崩溃问题;在此基础上,采用高效通道注意力机制来进一步提高模型的特征提取能力。将所提出的模型应用于扩充机械设备故障数据集,辅助深度学习智能诊断模型的训练。多个故障数据集扩充实验表明,与现有模型相比,新模型所生成数据的质量更高,故障诊断的准确率也得到进一步提高,因此具有较高的应用价值。 展开更多
关键词 多判别器辅助分类生成对抗网络 高效通道注意力机制 Lipschitz(利普希茨)约束 数据增强 故障诊断
在线阅读 下载PDF
基于生成式对抗网络的高光谱影像分类
3
作者 郑猛猛 葛小三 《遥感信息》 CSCD 北大核心 2024年第1期83-92,共10页
高光谱遥感影像智能解译是实现高光谱遥感应用的重要研究任务之一。针对生成式对抗网络在高光谱遥感影像分类中空谱特征利用不足的问题,提出了一种基于CVAE-GAN的高光谱遥感影像分类对抗网络算法(hyperspectral remote sensing classifi... 高光谱遥感影像智能解译是实现高光谱遥感应用的重要研究任务之一。针对生成式对抗网络在高光谱遥感影像分类中空谱特征利用不足的问题,提出了一种基于CVAE-GAN的高光谱遥感影像分类对抗网络算法(hyperspectral remote sensing classification based on CVAE-CGAN,HCVAE-CGAN),通过搭建1D-CNN分类模型和2D-CNN分类模型,训练判别器识别空谱特征,利用CVAE替代生成器结构生成影像光谱特征和空间特征,通过encode模块处理训练集得到空谱特征值,并将空谱特征值解码生成图像光谱,随后比对原始图像进行decode网络模型的优化,最后利用生成样本对分类器进行训练。实验结果表明,HCVAE-CGAN方法在小样本训练中有更好的检测性能,在Indian Pines和Pavia University数据集中的总体精度分别提高了2.85个百分点和3.92个百分点。 展开更多
关键词 高光谱图像分类 生成式对抗网络 分类方法 深度学习
在线阅读 下载PDF
基于辅助分类–边界平衡生成式对抗网络的局部放电数据增强与多源放电识别 被引量:20
4
作者 朱永利 张翼 +1 位作者 蔡炜豪 高盎然 《中国电机工程学报》 EI CSCD 北大核心 2021年第14期5044-5053,共10页
为解决局部放电(partial discharge,PD)源诊断中放电样本的不平衡问题,并克服传统多源放电诊断方法对脉冲聚类分离效果的依赖,该文提出基于辅助分类–边界平衡生成式对抗网络(boundary equilibrium generative adversarial network with... 为解决局部放电(partial discharge,PD)源诊断中放电样本的不平衡问题,并克服传统多源放电诊断方法对脉冲聚类分离效果的依赖,该文提出基于辅助分类–边界平衡生成式对抗网络(boundary equilibrium generative adversarial network with auxiliary classifier,AC-BEGAN)的PD数据增强与多源放电识别方法。首先,对PD脉冲进行同步挤压小波变换(synchrosqueezed wavelet transform,SWT)作为训练样本。然后,在训练稳定性优越的BEGAN基础上,融合条件信息和辅助局放脉冲分类任务构建AC-BEGAN模型,旨在提升模型的生成能力并条件式地扩充训练样本。最后,采用扩充均衡的训练样本微调该辅助分类任务以学习多源放电中各单次脉冲的类别,并将占主导的脉冲标签的组合确定为该多源放电类型。结果表明,该方法相比于传统数据增强技术可以有效地均衡脉冲样本,同时可以克服传统诊断方法对聚类分离效果的依赖,直接实现多源放电诊断。 展开更多
关键词 多源局部放电 同步挤压小波变换 数据增强 辅助分类-边界平衡生成对抗网络
在线阅读 下载PDF
基于改进生成对抗网络的海上风电机组故障数据增强及诊断 被引量:2
5
作者 魏书荣 殷世杰 +1 位作者 闫梦飞 周海林 《电力系统保护与控制》 北大核心 2025年第1期114-124,共11页
海洋复杂运行环境下,风电机组故障多样,故障有效样本数据明显不足,严重影响了故障诊断效果。为解决海上风电运行数据及故障样本积累不足的问题,提出了一种基于GRA-rACGAN生成对抗网络的数据增强方法,可有效扩充海上风机异常工况数据,并... 海洋复杂运行环境下,风电机组故障多样,故障有效样本数据明显不足,严重影响了故障诊断效果。为解决海上风电运行数据及故障样本积累不足的问题,提出了一种基于GRA-rACGAN生成对抗网络的数据增强方法,可有效扩充海上风机异常工况数据,并通过实际运行数据进行诊断验证。首先,对SCADA系统采集的数据进行灰色关联分析(grey relation analysis,GRA),筛选出与海上风电机组运行状态高度相关的状态变量,对数据进行归一化处理,将特征的最小最大范围添加为每个样本的两个附加属性,避免异常数据干扰,提高数据生成能力。然后,将筛选出的状态变量数据集输入至改进型辅助分类器,采用生成对抗网络进行学习,扩充故障数据。最后,以海上风机实际运行数据的增强结果作为样本进行故障诊断,检验故障数据增强方法的可靠性。通过对海上风电场的实际运行数据实测结果表明,本模型相比于传统数据增强技术可以有效地生成故障样本,提高故障诊断的准确率与稳定性,为海上风机故障的准确预警提供技术支撑。 展开更多
关键词 海上风机 数据增强 灰色关联分析 辅助分类生成对抗网络 故障诊断
在线阅读 下载PDF
面向高光谱影像分类的生成式对抗网络 被引量:7
6
作者 张鹏强 刘冰 +3 位作者 余旭初 谭熊 杨帆 周增华 《测绘通报》 CSCD 北大核心 2020年第3期29-34,共6页
为了提高高光谱影像分类精度,提出了一种基于生成式对抗网络的高光谱影像分类方法。生成式对抗网络由生成器、判别器和分类器3部分组成,其中生成器用于模拟高光谱样本的数据分布,生成特定类别的样本;判别器是一个二值分类器,用于判断输... 为了提高高光谱影像分类精度,提出了一种基于生成式对抗网络的高光谱影像分类方法。生成式对抗网络由生成器、判别器和分类器3部分组成,其中生成器用于模拟高光谱样本的数据分布,生成特定类别的样本;判别器是一个二值分类器,用于判断输入的样本是否为真实数据;分类器用于对输入的样本进行分类。利用反向传播算法依次更新生成器、判别器和分类器的网络参数使损失函数最小,从而达到训练网络的目的。生成器和判别器能够模拟高光谱影像的样本分布来辅助训练分类器,因此能够提高高光谱影像的分类精度。分别采用Pavia大学和Salinas高光谱数据集进行分类试验,试验结果表明提出的分类方法能够在小样本条件下提高高光谱影像的分类精度。 展开更多
关键词 高光谱影像分类 小样本 生成式对抗网络 深度学习 生成模型
在线阅读 下载PDF
基于改进辅助分类生成对抗网络的风机主轴承故障诊断 被引量:32
7
作者 卢锦玲 张祥国 +2 位作者 张伟 郭鲁豫 闻若彤 《电力系统自动化》 EI CSCD 北大核心 2021年第7期148-154,共7页
基于振动信号的风电机组故障诊断方法是风电安全运维领域研究的重点之一。风电机组主轴承较少发生故障,给运用数据挖掘方法判断故障类型带来很大困难。针对该问题,文中提出了一种用于风电机组主轴承故障诊断的数据增强方法。通过对辅助... 基于振动信号的风电机组故障诊断方法是风电安全运维领域研究的重点之一。风电机组主轴承较少发生故障,给运用数据挖掘方法判断故障类型带来很大困难。针对该问题,文中提出了一种用于风电机组主轴承故障诊断的数据增强方法。通过对辅助分类生成对抗网络(ACGAN)的适应性进行改进,引入梯度惩罚,构建了改进ACGAN框架,以提高其学习稳定性;在判别器网络中引入池化层,以提升其在多分类场景下提取数据特征的能力。仿真结果表明,所提出的改进ACGAN框架能够实现对原始数据分布特征的有效学习,抗噪声干扰性强,相对于原框架训练过程更稳定,生成数据的质量更高;能够有效平衡风电机组主轴承故障振动数据,进一步提升了风电机组主轴承故障诊断的正确率。 展开更多
关键词 风电机组 故障诊断 数据增强 辅助分类生成对抗网络 梯度惩罚
在线阅读 下载PDF
生成式对抗网络在抑郁症分类中的应用 被引量:7
8
作者 刘宁 杨剑 《计算机应用与软件》 北大核心 2018年第6期163-168,233,共7页
深度学习领域中的条件深度卷积生成式对抗网络(CDCGAN)是一种能够生成与训练数据同分布样本的生成模型。针对抑郁症f MRI(functional Magnetic Resonance Imaging)数据难采集、用于研究的被试数远小于数据特征维数的问题,首次将CDCGAN... 深度学习领域中的条件深度卷积生成式对抗网络(CDCGAN)是一种能够生成与训练数据同分布样本的生成模型。针对抑郁症f MRI(functional Magnetic Resonance Imaging)数据难采集、用于研究的被试数远小于数据特征维数的问题,首次将CDCGAN应用于生成抑郁症f MRI数据并提出一种混合特征选择方法用于分析f MRI数据。采用组独立成分分析提取41名被试的独立成分并构建全脑动态功能连接网络;通过肯德尔排序相关系数法选出具有较强辨别能力的特征并使用CDCGAN扩充数据;采用所提出的混合特征选择法进行特征选择;对41名被试的数据进行分类。实验结果表明,采用CDCGAN的分类正确率为92.68%,明显优于不应用CDCGAN的分类结果 68.29%,同时说明了抑郁症f MRI数据采用CDCGAN方法扩充数据的可行性以及混合特征选择方法能选出更有效的特征。 展开更多
关键词 条件深度卷积生成式对抗网络 分类 动态功能连接 独立成分分析
在线阅读 下载PDF
基于生成对抗网络的低分化宫颈癌病理图像分类 被引量:1
9
作者 李晨 张家伟 +1 位作者 张昊 汪茜 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第7期1054-1060,1064,共8页
使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试... 使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试集相同的情况下,该方法可以将总体分类准确率提升约2. 5%,尤其对低分化宫颈癌病理图像有显著效果.通过GAN解决了组织病理学图像无方向性、内容复杂、前景目标规则性差等问题,证明了该方法的有效性及发展潜力. 展开更多
关键词 宫颈癌辅助诊断 组织病理学图像分类 生成对抗网络 特征提取 K-MEANS聚类
在线阅读 下载PDF
基于条件生成式对抗网络的面部表情迁移模型 被引量:3
10
作者 陈军波 刘蓉 +1 位作者 刘明 冯杨 《计算机工程》 CAS CSCD 北大核心 2020年第4期228-235,共8页
面部表情迁移是计算机视觉角色动画领域的关键技术,但现有面部表情迁移方法存在生成表情不自然、缺乏真实感、迁移模型复杂以及训练难度大等问题.为此,构建一种基于条件生成式对抗网络的面部表情迁移模型.通过设计域分类损失函数指定表... 面部表情迁移是计算机视觉角色动画领域的关键技术,但现有面部表情迁移方法存在生成表情不自然、缺乏真实感、迁移模型复杂以及训练难度大等问题.为此,构建一种基于条件生成式对抗网络的面部表情迁移模型.通过设计域分类损失函数指定表情域条件,使单个生成器学习多个表情域之间的映射,同时利用模型生成器和判别器之间的条件约束与零和博弈,在仅训练一个生成器的情况下同时实现7种面部表情迁移.实验结果表明,该模型能够有效进行面部表情迁移并且鲁棒性较强,其生成的面部表情较StarGAN模型更自然、逼真. 展开更多
关键词 表情迁移 条件生成式对抗网络 分类损失 重构损失 零和博弈
在线阅读 下载PDF
基于改进生成式对抗网络的编码DNA分子识别 被引量:1
11
作者 随学杰 王慧锋 颜秉勇 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期241-246,共6页
纳米孔道单分子检测技术通过在纳米孔道中捕获分子穿过时产生的离子流变化信号来研究单个分子的信息。然而,由于纳米孔道对不同分子的捕获率不同,因此采集到的单分子数据集不平衡,进而影响分子识别的准确率。本文基于编码DNA分子的阻断... 纳米孔道单分子检测技术通过在纳米孔道中捕获分子穿过时产生的离子流变化信号来研究单个分子的信息。然而,由于纳米孔道对不同分子的捕获率不同,因此采集到的单分子数据集不平衡,进而影响分子识别的准确率。本文基于编码DNA分子的阻断事件,构建以深度卷积生成式对抗网络(DCGAN)为基本框架的模型,实现少数类样本的扩充,从而达到纳米孔道数据集的平衡处理,并采用QuipuNet对平衡前后的数据集进行训练和识别。结果表明,采用DCGAN平衡数据集后,训练后的QuipuNet对部分"100"编码分子的识别准确率提升了14%,且平均识别准确率均高于其他扩充数据集的方法,验证了采用DCGAN扩充编码DNA分子数据以平衡数据集可有效提高模型训练后对实际信号的识别准确率。 展开更多
关键词 深度卷积生成式对抗网络 QuipuNet 分类 纳米孔道数据分析 编码DNA分子
在线阅读 下载PDF
基于生成式对抗网络的结构化数据表生成模型 被引量:8
12
作者 宋珂慧 张莹 +1 位作者 张江伟 袁晓洁 《计算机研究与发展》 EI CSCD 北大核心 2019年第9期1832-1842,共11页
在机器学习和数据库等领域,高质量数据集的合成一直以来是一个非常重要且充满挑战性的问题.其中,合成的高质量数据集可用来改善模型,尤其是深度学习模型的训练过程.一个健壮的模型训练过程需要大量已标注的数据集,获取这些数据集的一种... 在机器学习和数据库等领域,高质量数据集的合成一直以来是一个非常重要且充满挑战性的问题.其中,合成的高质量数据集可用来改善模型,尤其是深度学习模型的训练过程.一个健壮的模型训练过程需要大量已标注的数据集,获取这些数据集的一种方法是通过领域专家的手动标注,这种方法不仅代价大还容易出错,因此由模型自动合成高质量数据集的方法更为合理.近年来,由于计算机视觉领域的飞速发展,已经有不少致力于图像数据集合成的研究,但是这些模型不能直接应用在结构化数据表上,并且据调研,对这类数据的相关研究几乎没有.因此,提出了一个针对结构化数据表的生成模型TableGAN,该模型是生成式对抗网络(generative adversarial network, GAN)家族的一种变体,通过对抗训练的方式提高生成模型的性能.针对结构化数据的特征改变了传统GAN模型的内部结构,包括优化函数等,使其能够生成高质量的结构化数据用于改善模型的训练过程.通过在真实数据集上的大量实验表明了此模型的有效性,即在扩大后的数据集上训练模型的效果有明显提升. 展开更多
关键词 深度学习 生成模型 神经网络 生成式对抗网络 分类
在线阅读 下载PDF
多层次生成对抗网络的动画头像生成方法研究 被引量:7
13
作者 高文超 任圣博 +1 位作者 田驰 赵珊珊 《计算机工程与应用》 CSCD 北大核心 2022年第9期230-237,共8页
现有的动画图像生成方法存在合成图像多样性缺失、局部纹理不清晰、样本方差较小,难以根据细节描述进行生成的问题。基于堆叠式生成对抗网络(StackGAN++)的思想,结合辅助分类器,提出改进模型ACM-GAN(auxiliary classification atteched ... 现有的动画图像生成方法存在合成图像多样性缺失、局部纹理不清晰、样本方差较小,难以根据细节描述进行生成的问题。基于堆叠式生成对抗网络(StackGAN++)的思想,结合辅助分类器,提出改进模型ACM-GAN(auxiliary classification atteched multi-level generative adversial networks,带有辅助分类器的多层次结构生成对抗网络)用于动画人物头像生成。该网络模型由两个生成器和两个判别器堆叠而成,并在判别器中嵌入辅助分类器对生成结果进行约束,使生成样本方差变大,增加生成样本的多样性。为保证合成图像真实度和清晰度,引入特征图空间损失和图像像素空间均值方差损失以最小化合成数据和真实数据的距离。实验结果表明,多层次结构能够有效稳定训练过程,增加图像的边缘细节和局部纹理,同时辅助分类器有效解决模式崩溃问题,提高生成指定类别图像的准确率。ACM-GAN生成图像的FID分数达到27.96,相比于StackGAN++提升23.1%。 展开更多
关键词 动画头像生成 生成对抗网络 多层次结构 辅助分类
在线阅读 下载PDF
基于生成对抗网络的主机入侵风险识别 被引量:1
14
作者 林英 李元培 潘梓文 《计算机应用与软件》 北大核心 2021年第11期331-337,共7页
随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN... 随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN,该模型能有效解决梯度偏移或梯度消失的问题。TR-GAN相较于AC-GAN及LS-GAN,不但风险识别准确率更稳定,最大识别准确率达到80%,且其风险样本生成模块能在较少训练迭代轮数下就生成与真实攻击样本具有相同特征的攻击样本。生成的攻击样本不但可以作为训练样本的补充,而且可作为部署系统安全策略的参考。 展开更多
关键词 入侵风险识别 生成对抗网络 辅助分类器-生成对抗网络 最小二乘-生成对抗网络 主机特征
在线阅读 下载PDF
基于改进生成对抗网络的电压暂降事件类型辨识研究 被引量:12
15
作者 沙浩源 梅飞 +4 位作者 李丹奇 李轩 张宸宇 史明明 郑建勇 《中国电机工程学报》 EI CSCD 北大核心 2021年第22期7648-7659,共12页
为缓解特征自提取模型对电压暂降样本数据量的依赖,提高模型的特征抓取能力,该文提出基于改进辅助分类生成对抗网络(auxiliary classifier generative adversarial networks,AC-GAN)的暂降事件类型辨识算法。首先,将暂降三相电压数据转... 为缓解特征自提取模型对电压暂降样本数据量的依赖,提高模型的特征抓取能力,该文提出基于改进辅助分类生成对抗网络(auxiliary classifier generative adversarial networks,AC-GAN)的暂降事件类型辨识算法。首先,将暂降三相电压数据转换为基于空间矢量(space phasor model,SPM)的二维轨迹曲线,以此作为智能模型的输入。然后,对AC-GAN进行改进,通过在判别器内融合卷积注意力模块(convolutional block attention module,CBAM)来改善判断模型的特征自提取能力,从而提高整个AC-GAN网络的性能。利用所生成的与真实样本特性及分布一致的数据,来实现数据增强,以解决非平衡样本条件下特征学习不充分的问题。最后,利用江苏地区实际数据场景验证了所提算法在不同数据条件下准确而稳定的暂降类型辨识能力。 展开更多
关键词 辅助分类生成对抗网络 空间矢量 卷积注意力机制 暂降事件 类型辨识
在线阅读 下载PDF
基于辅助分类网络的跨领域文本情感分类
16
作者 马娜 温廷新 +1 位作者 贾旭 李晓会 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期721-733,共13页
为了使源域与目标域中同类情感文本准确对齐,且尽可能增大不同情感文本特征差异,提出了一种具有加权对抗网络的域适应模型。提出了一种主分类网络与辅助分类网络相结合的网络结构,主分类网络用于对源域文本进行有监督学习,辅助分类网络... 为了使源域与目标域中同类情感文本准确对齐,且尽可能增大不同情感文本特征差异,提出了一种具有加权对抗网络的域适应模型。提出了一种主分类网络与辅助分类网络相结合的网络结构,主分类网络用于对源域文本进行有监督学习,辅助分类网络用来提高文本特征的可区分度;提出了一种多对抗网络权重计算方法,实现域间同类样本的准确对齐。实验结果表明:对于Amazon数据集,提出的模型对于目标域中文本的平均识别准确率可达84.22%,比对比模型提升了2.07%,说明该模型可将优化得到的特征提取器与特征分类器同时较好的适用于源域与目标域中,从而对不同领域文本分析仿真建模提供了可靠的数据。 展开更多
关键词 文本情感分类 域适应 对抗网络 辅助分类网络
在线阅读 下载PDF
基于卷积神经网络的图像分类算法综述 被引量:111
17
作者 杨真真 匡楠 +1 位作者 范露 康彬 《信号处理》 CSCD 北大核心 2018年第12期1474-1489,共16页
随着大数据的到来以及计算能力的提高,深度学习(Deep Learning,DL)席卷全球。传统的图像分类方法难以处理庞大的图像数据以及无法满足人们对图像分类精度和速度上的要求,基于卷积神经网络(Convolutional Neural Network,CNN)的图像分类... 随着大数据的到来以及计算能力的提高,深度学习(Deep Learning,DL)席卷全球。传统的图像分类方法难以处理庞大的图像数据以及无法满足人们对图像分类精度和速度上的要求,基于卷积神经网络(Convolutional Neural Network,CNN)的图像分类方法冲破了传统图像分类方法的瓶颈,成为目前图像分类的主流算法,如何有效利用卷积神经网络来进行图像分类成为国内外计算机视觉领域研究的热点。本文在对卷积神经网络进行系统的研究并且深入研究卷积神经网络在图像处理中的应用后,给出了基于卷积神经网络的图像分类所采用的主流结构模型、优缺点、时间/空间复杂度、模型训练过程中可能遇到的问题和相应的解决方案,与此同时也对基于深度学习的图像分类拓展模型的生成式对抗网络和胶囊网络进行介绍;然后通过仿真实验验证了在图像分类精度上,基于卷积神经网络的图像分类方法优于传统图像分类方法,同时综合比较了目前较为流行的卷积神经网络模型之间的性能差异并进一步验证了各种模型的优缺点;最后对于过拟合问题、数据集构建方法、生成式对抗网络及胶囊网络性能进行相关实验及分析。 展开更多
关键词 卷积神经网络 图像分类 深度学习 生成式对抗网络 胶囊网络
在线阅读 下载PDF
小样本下基于改进ACGAN数据增强的X射线矿石图像分类方法 被引量:6
18
作者 王文 何剑锋 +6 位作者 朱文松 李卫东 聂逢君 夏菲 汪雪元 钟国韵 瞿金辉 《有色金属工程》 CAS 北大核心 2024年第3期122-132,共11页
针对工业领域利用深度学习模型对矿石进行在线分类时,矿石样本稀少导致的模型过拟合、分类准确率低的问题,提出一种结合X射线透射成像技术的矿石数据增强分类方法。该方法基于改进辅助生成对抗网络(Enhance-based Classification ACGAN-... 针对工业领域利用深度学习模型对矿石进行在线分类时,矿石样本稀少导致的模型过拟合、分类准确率低的问题,提出一种结合X射线透射成像技术的矿石数据增强分类方法。该方法基于改进辅助生成对抗网络(Enhance-based Classification ACGAN-gp, EC-ACGAN-gp),采用卷积和连续残差块构建判别器和生成器,引入注意力机制捕捉矿石细节特征,生成高质量样本扩充原始数据集,同时使用带梯度惩罚的Wasserstein距离重构判别器的损失函数提高对抗训练的稳定性,避免模式崩溃。通过增加辅助分类器重建样本标签信息,最终实现矿石样本的类别预测。结果表明,该方法能实现矿石品位分类的精准预测,准确率可达89.62%,比现有传统方法提高3.98%。该模型生成的矿石样本泛化性良好,能够显著提高小样本数据集的泛化性,在SVM、LeNet5、VGGNet、ResNet上测试,精度分别提升了2.83%、2.36%、1.89%和3.74%,可进一步用于提升其他分类模型在矿石品位预测方面的性能。 展开更多
关键词 矿石分类 小样本 数据增强 辅助生成对抗网络 X射线成像 自注意力机制
在线阅读 下载PDF
基于改进RAC-GAN的电动船舶充电负荷场景生成方法
19
作者 廖菲 杨军 +3 位作者 林毅 薛静玮 吴少将 朱睿 《电力系统自动化》 EI CSCD 北大核心 2024年第22期171-181,共11页
随着电动船舶的发展和普及,内河流域的港口用能结构正逐步由燃油转变为清洁的电能,港口负荷将对配电网峰谷差造成显著影响。为准确描述电动船舶充电负荷特征,提出了一种基于改进鲁棒性辅助分类生成对抗网络(RAC-GAN)的电动船舶充电负荷... 随着电动船舶的发展和普及,内河流域的港口用能结构正逐步由燃油转变为清洁的电能,港口负荷将对配电网峰谷差造成显著影响。为准确描述电动船舶充电负荷特征,提出了一种基于改进鲁棒性辅助分类生成对抗网络(RAC-GAN)的电动船舶充电负荷场景生成方法。首先,分析电动船舶充电负荷的特征,构建含环境特征与充电负荷的原始数据集;然后,对RAC-GAN进行改进,加入变分编码器对船舶数据集进行降维,抽取特征信息簇标签,并在判别器中引入噪声过渡模型和卷积层,以提高判别器的抗噪能力,并对网络的损失函数进行重定义;最后,以中国实际港口为例,基于改进的RAC-GAN生成船舶充电负荷的海量场景。仿真结果表明,所提方法能够学习到电动船舶的负荷特征,对噪声具有较高的鲁棒性,并且可以有效生成大量满足真实样本概率分布特征的电动船舶充电负荷场景。 展开更多
关键词 电动船舶 充电负荷 场景生成 鲁棒性辅助分类 生成对抗网络 深度学习
在线阅读 下载PDF
基于边界辅助判别的滚动轴承故障特征增强及诊断方法 被引量:1
20
作者 李佰霖 鲁大臣 +1 位作者 付文龙 陈禹朋 《机电工程》 CAS 北大核心 2024年第4期643-650,共8页
滚动轴承作为机械设备重要部件,对保障设备安全稳定运行具有重要意义。针对实际诊断中的滚动轴承故障数据不平衡问题,提出了一种基于边界辅助判别的辅助分类生成对抗网络模型(BD-ACGAN)。首先,设计了一种可用于提取故障样本边界细节特... 滚动轴承作为机械设备重要部件,对保障设备安全稳定运行具有重要意义。针对实际诊断中的滚动轴承故障数据不平衡问题,提出了一种基于边界辅助判别的辅助分类生成对抗网络模型(BD-ACGAN)。首先,设计了一种可用于提取故障样本边界细节特征的边界辅助判别器,以引导生成器生成更真实的样本,并采用该生成样本解决了数据不平衡的问题;其次,采用了自适应权重损失模块,动态调整了损失权重,使该模型更加关注重要的特征信息,从而提高了该模型的生成质量和特征表达能力;利用生成样本和真实样本数据对BD-ACGAN模型进行了增强训练,提高了该模型的泛化能力和诊断能力;最后,进行了消融实验及对照实验,对BD-ACGAN模型的特征增强能力和诊断效果进行了验证,分别采用美国凯斯西储大学和西安交通大学滚动轴承数据集对模型进行了实验验证。研究结果表明:该BD-ACGAN模型能够有效利用故障样本的边界特征解决数据不平衡问题,并且故障诊断精确度为98.79%,优于其他对照模型,为滚动轴承故障诊断提供了一种新的方法。 展开更多
关键词 轴承故障诊断 数据不平衡 边界辅助判别的辅助分类生成对抗网络 故障特征增强 自适应权重损失 数据集增广
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部