期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
生成对抗网络赋能面向平面布局生成中的家具布置
1
作者 梁理锋 李光耀 《家具》 2025年第1期23-28,共6页
传统的家具平面布置图设计因其专业性、主观性以及设计流程耗时耗力,在寻找合适的辅助设计方面遇到挑战。生成式AI是实现设计智能化的有效辅助工具,通过将生成式AI融入家具平面布置图设计显示出潜力。鉴于此,研究采用生成对抗网络算法... 传统的家具平面布置图设计因其专业性、主观性以及设计流程耗时耗力,在寻找合适的辅助设计方面遇到挑战。生成式AI是实现设计智能化的有效辅助工具,通过将生成式AI融入家具平面布置图设计显示出潜力。鉴于此,研究采用生成对抗网络算法辅助设计师提升效率,通过分析生成对抗网络的发散性与交互性,以及家具平面布局设计任务自身多样化以及协同化的要求,指明了生成对抗网络在家具平面布置图设计任务中的应用适宜性,并结合建筑平面布局领域的先进研究提出了针对家具平面布置图设计任务的一些方法与建议,提出了基于功能泡泡图的家具布置图数据处理方式以及生成器与判别器架构的具体设置思路,最后讨论了评价体系,研究结果认为GAN运用于家具布置设计是一条有效的路径。 展开更多
关键词 生成式AI 生成对抗网络 家具平面布置图 辅助设计
在线阅读 下载PDF
基于生成对抗网络的低分化宫颈癌病理图像分类 被引量:1
2
作者 李晨 张家伟 +1 位作者 张昊 汪茜 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第7期1054-1060,1064,共8页
使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试... 使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试集相同的情况下,该方法可以将总体分类准确率提升约2. 5%,尤其对低分化宫颈癌病理图像有显著效果.通过GAN解决了组织病理学图像无方向性、内容复杂、前景目标规则性差等问题,证明了该方法的有效性及发展潜力. 展开更多
关键词 宫颈癌辅助诊断 组织病理学图像分类 生成对抗网络 特征提取 K-MEANS聚类
在线阅读 下载PDF
基于生成对抗网络的无载体信息隐藏 被引量:31
3
作者 刘明明 张敏情 +2 位作者 刘佳 高培贤 张英男 《应用科学学报》 CAS CSCD 北大核心 2018年第2期371-382,共12页
传统信息隐藏算法通过修改载体来嵌入秘密信息,难以从根本上抵抗基于统计的信息隐藏分析方法的检测,为此提出一种基于生成对抗网络的无载体信息隐藏方法.该方法将生成对抗网络中的类别标签替换为秘密信息作为驱动,直接生成含密图像进行... 传统信息隐藏算法通过修改载体来嵌入秘密信息,难以从根本上抵抗基于统计的信息隐藏分析方法的检测,为此提出一种基于生成对抗网络的无载体信息隐藏方法.该方法将生成对抗网络中的类别标签替换为秘密信息作为驱动,直接生成含密图像进行传递,再通过判别器将含密图像中的秘密信息提取出来,并借助生成对抗网络实现无载体信息隐藏.实验结果和分析表明,该隐藏方法在隐写容量、抗隐写分析、安全性方面均有良好表现. 展开更多
关键词 信息隐藏 无载体信息隐藏 生成对抗网络 acgan(auxiliary CLASSIFIER GAN)
在线阅读 下载PDF
基于生成对抗网络的偏转人脸转正 被引量:2
4
作者 胡惠雅 盖绍彦 达飞鹏 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第1期116-123,152,共9页
为了提高偏转人脸转正的效果,借鉴双通道生成对抗网络(TP-GAN)双通道生成的思想,将原始网络中的深度卷积生成对抗网络(DCGAN)替换成边界均衡生成对抗网络(BEGAN).在传统两者对抗的网络结构中加入判别人脸身份的分类器,形成三者对抗的网... 为了提高偏转人脸转正的效果,借鉴双通道生成对抗网络(TP-GAN)双通道生成的思想,将原始网络中的深度卷积生成对抗网络(DCGAN)替换成边界均衡生成对抗网络(BEGAN).在传统两者对抗的网络结构中加入判别人脸身份的分类器,形成三者对抗的网络结构.经实验对比可知,与在生成器损失函数中添加约束相比,结构上加入分类器对人脸身份一致性的保持更加有效.TP-GAN存在训练复杂、模式崩溃等难题,使用BEGAN的网络结构,可以避免这些问题,提高训练效率.在Multi-PIE数据集及LFW上的实验结果表明,利用提出的方法能够高效地生成高质量的正面人脸图片,且保留人脸的身份特征. 展开更多
关键词 人脸生成 分类器 模式崩溃 生成对抗网络(GAN)
在线阅读 下载PDF
基于对抗性双通道编码器的网络入侵检测算法
5
作者 金诗博 张立 《火力与指挥控制》 CSCD 北大核心 2024年第6期75-82,共8页
针对网络流量数据不平衡引起少数类攻击检测率低的问题,提出一种基于对抗性双通道编码器的入侵检测算法。分别采用正常流量和攻击流量来训练变分自编码器模型,构建基于自编码器派生流量数据的多通道表示形式的新特征向量,驱动生成对抗... 针对网络流量数据不平衡引起少数类攻击检测率低的问题,提出一种基于对抗性双通道编码器的入侵检测算法。分别采用正常流量和攻击流量来训练变分自编码器模型,构建基于自编码器派生流量数据的多通道表示形式的新特征向量,驱动生成对抗网络的生成过程朝向目标类,生成的少数类图像,有效地扩充数据集;通过引入CBAM模块来改进生成器的网络结构,融合通道和空间两个方向的特征,增强模型的特征提取能力;将判别器输出调整为单目标分类并加入softmax层,输出Fake、Normal和Attack结果,避免生成器生成无法与所需类型匹配的图像而获得奖励,提高生成图片的质量。实验结果表明,该方法能够有效降低误报率以及提高未知攻击的检测精度,尤其在不平衡数据集中具有更多的优势。 展开更多
关键词 入侵检测算法 辅助生成对抗网络 自编码器 注意力机制
在线阅读 下载PDF
基于改进ACGAN算法的车道排队车辆估计及其分类
6
作者 郭海锋 杨宪赞 金峻臣 《高技术通讯》 EI CAS 北大核心 2020年第11期1169-1177,共9页
针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采... 针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采用Bi-LSTM结构,以速度序列为输入,根据速度与排队车辆的时间相关性,生成最小、最大排队车辆。判别器来自ACGAN,在区分真假样本的同时实现排队车辆到拥堵等级标签的分类。同时,为避免网络训练不稳定、梯度消失的问题,舍弃原ACGAN的真假二分类任务,引入Wasserstein散度来衡量真实序列与生成序列的分布距离,并对相应的目标函数进行优化。结果表明,与其他算法相比,该算法在分类准确率方面提高了3.96%~9.62%,同时总体估计误差最小,验证了利用速度估计车道排队车辆的可行性。 展开更多
关键词 辅助分类器生成对抗网络(acgan) 双向长短时记忆(Bi-LSTM) Wasserstein散度 车道级排队车辆估计 分类
在线阅读 下载PDF
人工智能在色彩搭配设计中的辅助作用研究
7
作者 倪栋 《中国印刷》 2024年第5期49-51,共3页
人工智能(AI)正逐步渗透到色彩搭配设计领域,成为设计师的重要工具,通过大数据分析、机器学习、生成对抗网络(GAN)等技术手段,优化色彩生成和搭配,并提供个性化的用户推荐,从而提高设计效率,带来更多创意和可能性。
关键词 大数据分析 机器学习 用户推荐 生成对抗网络 色彩搭配 辅助作用 提高设计效率 个性化
在线阅读 下载PDF
基于改进ACGAN的雷达空中目标细分类方法
8
作者 刘帅康 曹伟 +2 位作者 管志强 杨学岭 许金鑫 《火力与指挥控制》 CSCD 北大核心 2023年第7期74-78,84,共6页
为了解决窄带雷达空中3类飞机目标难以细分类的问题,提出了一种基于改进辅助生成对抗网络(auxiliary classifier generate adversarial networks,ACGAN)方法,将卷积神经网络(convolutional neural networks,CNN)结合堆叠的双向长短期记... 为了解决窄带雷达空中3类飞机目标难以细分类的问题,提出了一种基于改进辅助生成对抗网络(auxiliary classifier generate adversarial networks,ACGAN)方法,将卷积神经网络(convolutional neural networks,CNN)结合堆叠的双向长短期记忆网络(bidirectional long short-termmemory,Bi-LSTM)嵌入到ACGAN中,使ACGAN具有处理目标频域内部时序特征的能力。通过对X波段对空警戒雷达实测数据对比实验表明,提出的方法能够有效地对空中目标进行细分类,并具有较高的识别正确率。 展开更多
关键词 窄带雷达 空中目标分类 辅助生成对抗网络 双向长短期记忆网络
在线阅读 下载PDF
学贯中西(7):介绍生成对抗网路(GAN)
9
作者 高焕堂 《电子产品世界》 2022年第5期16-19,共4页
1 GAN与NFT的结合在上一期里,我们说明了天字第一号模型:分类器。接着本期就来看看它的一项有趣应用:GAN(generative adversarial networks,生成对抗网络)。自从2014年问世以来,GAN在电脑生成艺术(generative art)领域,就开始涌现了许... 1 GAN与NFT的结合在上一期里,我们说明了天字第一号模型:分类器。接着本期就来看看它的一项有趣应用:GAN(generative adversarial networks,生成对抗网络)。自从2014年问世以来,GAN在电脑生成艺术(generative art)领域,就开始涌现了许多极具吸引力的创作和贡献。GAN如同生成艺术的科技画笔,使用GAN进行创作特别令人振奋,常常创作出很特别的效果,给人们许多惊喜的感觉,例如图1。 展开更多
关键词 生成对抗网络 分类器 生成艺术 网路 学贯中西
在线阅读 下载PDF
融合句嵌入的VAACGAN多对多语音转换 被引量:1
10
作者 李燕萍 曹盼 +1 位作者 石杨 张燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第3期500-508,共9页
针对非平行文本条件下语音转换质量不理想、说话人个性相似度不高的问题,提出一种融合句嵌入的变分自编码辅助分类器生成对抗网络(VAACGAN)语音转换方法,在非平行文本条件下,有效实现了高质量的多对多语音转换。辅助分类器生成对抗网络... 针对非平行文本条件下语音转换质量不理想、说话人个性相似度不高的问题,提出一种融合句嵌入的变分自编码辅助分类器生成对抗网络(VAACGAN)语音转换方法,在非平行文本条件下,有效实现了高质量的多对多语音转换。辅助分类器生成对抗网络的鉴别器中包含辅助解码器网络,能够在预测频谱特征真假的同时输出训练数据所属的说话人类别,使得生成对抗网络的训练更为稳定且加快其收敛速度。通过训练文本编码器获得句嵌入,将其作为一种语义内容约束融合到模型中,利用句嵌入包含的语义信息增强隐变量表征语音内容的能力,解决隐变量存在的过度正则化效应的问题,有效改善语音合成质量。实验结果表明:所提方法的转换语音平均MCD值较基准模型降低6.67%,平均MOS值提升8.33%,平均ABX值提升11.56%,证明该方法在语音音质和说话人个性相似度方面均有显著提升,实现了高质量的语音转换。 展开更多
关键词 语音转换 句嵌入 文本编码器 辅助分类器生成对抗网络(acgan) 变分自编码器 非平行文本 多对多
在线阅读 下载PDF
基于鉴别模型和对抗损失的无监督域自适应方法 被引量:7
11
作者 赵文仓 袁立镇 徐长凯 《高技术通讯》 EI CAS 北大核心 2020年第7期698-706,共9页
对于许多任务而言,收集注释良好的图像数据集来训练深度学习算法成本过高且耗时,而仅在渲染图像训练的模型通常无法推广到真实图像。针对上述问题,无监督域自适应算法试图在2个域之间映射一些表示或提取域不变的特征,将2个域映射到共同... 对于许多任务而言,收集注释良好的图像数据集来训练深度学习算法成本过高且耗时,而仅在渲染图像训练的模型通常无法推广到真实图像。针对上述问题,无监督域自适应算法试图在2个域之间映射一些表示或提取域不变的特征,将2个域映射到共同的特征空间。本文结合源域的有标签数据和目标域的无标签数据,提出了基于生成对抗网络(GAN)架构的无监督域自适应方法。方法使用鉴别模型,无需权重共享、对抗损失和辅助分类任务,以无监督的方式学习从一个域到另一个域的变换。对抗鉴别的无监督域自适应方法能有效减少训练域和测试域分布之间的差异,减轻域移位的有害影响,并显著地提高识别率。实验结果证明对抗鉴别方法比其他域自适应方法更有效且更简单,扩充样本的同时提高了网络的泛化性能。 展开更多
关键词 深度学习 无监督 域自适应 生成对抗网络(GAN) 辅助分类任务
在线阅读 下载PDF
基于改进ACGAN的永磁同步电机数据扩张方法 被引量:1
12
作者 许小伟 韦道明 +3 位作者 严运兵 刘哲宇 敖金艳 占柳 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第10期114-121,共8页
永磁同步电机(permanent magnet synchronous motor,PMSM)的监测数据呈现出非平稳、非线性、多源异构性和价值低密度性等特点,而仿真数据难以准确地模拟电机故障类型和故障程度,使得正常数据与故障数据的样本呈现严重不均衡现象,导致故... 永磁同步电机(permanent magnet synchronous motor,PMSM)的监测数据呈现出非平稳、非线性、多源异构性和价值低密度性等特点,而仿真数据难以准确地模拟电机故障类型和故障程度,使得正常数据与故障数据的样本呈现严重不均衡现象,导致故障诊断的模型训练容易出现过拟合、精度低等问题。本文提出了一种改进辅助分类生成对抗网络(auxiliary classification generation adversarial network,ACGAN),通过对原始样本的分布特性进行学习,实现对PMSM实测故障数据的扩张,为电机的故障诊断和健康评估提供数据基础。首先,针对ACGAN网络收敛性差和梯度易消失或爆炸的问题,使用Wasserstein距离约束生成数据的重建损失,利用梯度惩罚代替权值剪裁对模型进行优化,解决模型训练不稳定问题;其次,剖析数据之间的变化关系和历史变化规律,在生成器中引入循环神经网络提高生成数据质量;最后,利用PMSM匝间短路的故障数据,对比分析ROS、SMOTE、ADASYN及改进ACGAN 4种数据扩张方法对提升故障诊断模型性能的有效性。分析结果表明,与其他数据扩张方法相比,改进ACGAN方法的模型训练较稳定、收敛速度较快,扩张数据质量较高。 展开更多
关键词 永磁同步电机 数据扩张 改进辅助分类生成对抗网络 梯度惩罚 循环神经网络
在线阅读 下载PDF
多色彩通道特征融合的GAN合成图像检测方法 被引量:2
13
作者 乔通 陈彧星 +2 位作者 谢世闯 姚恒 罗向阳 《电子学报》 EI CAS CSCD 北大核心 2024年第3期924-936,共13页
当前,生成对抗网络(Generative Adversarial Networks,GAN)合成的逼真图像难以识别,严重危害国家网络安全及社会稳定.与此同时,多数基于深度神经网络模型设计的检测器需要大规模训练样本,且存在模型可解释度不高、泛化性能差等问题.为... 当前,生成对抗网络(Generative Adversarial Networks,GAN)合成的逼真图像难以识别,严重危害国家网络安全及社会稳定.与此同时,多数基于深度神经网络模型设计的检测器需要大规模训练样本,且存在模型可解释度不高、泛化性能差等问题.为了克服上述亟待解决的关键性难题,本文提出一种多色彩通道特征融合的GAN合成图像检测方法.首先,探索分析真实自然图像和GAN合成图像在不同色彩空间相邻像素之间的差异,并设计差异度量算法,完成色彩通道选择.其次,利用图像像素间的高度相关性,在八个方向上通过二阶马尔可夫链对相邻像素之间的差分数组进行建模,提取差分像素邻接矩阵特征.最后,利用上述特征,设计一种简单且高效的集成分类器完成GAN合成图像的检测任务.在基于StyleGAN模型合成的伪造人脸数据集中,所提出方法的检测准确率高达100.00%;在小样本训练约束条件下,正负样本对数仅仅为2时,检测准确率高达99.65%;在单类样本训练约束条件下,正样本数仅仅为50时,检测准确率高达92.84%.在基于更先进的StyleGAN2和PGGAN模型合成的伪造场景数据集中,所提出方法的检测准确率达到99.96%以上.以上大量实验表明,本文所提出的方法明显优于比较的GAN合成图像检测方法.本文方法已经开源:https://github.com/cyxcyx559/ccss. 展开更多
关键词 图像取证 色彩通道 特征融合 生成对抗网络 马尔可夫链 集成分类器
在线阅读 下载PDF
基于数据增强的小样本辐射源个体识别方法 被引量:2
14
作者 王艺卉 闫文君 +1 位作者 段可欣 于楷泽 《雷达科学与技术》 北大核心 2024年第1期104-110,118,共8页
针对样本数据难获取、捕捉样本类别不全面等样本不足的小样本学习识别准确率不高的困境,提出基于数据增强的小样本辐射源个体识别方法。首先,通过时域翻转、振幅反转、振幅缩放和噪声处理等方法对小样本数据集进行数据集扩充;其次,将噪... 针对样本数据难获取、捕捉样本类别不全面等样本不足的小样本学习识别准确率不高的困境,提出基于数据增强的小样本辐射源个体识别方法。首先,通过时域翻转、振幅反转、振幅缩放和噪声处理等方法对小样本数据集进行数据集扩充;其次,将噪声序列和类别标签输入生成器进一步生成“以假乱真”的生成样本,提高生成样本的多样性并通过辅助分类器同步完成真假样本判别和类别预测;最后,根据判别器动态反馈渐进式调整损失函数权值,重点关注高质量样本进一步优化网络,提高识别准确性。 展开更多
关键词 辐射源个体识别 小样本 数据增强 辅助分类生成对抗网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部