期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
基于多判别器辅助分类器生成对抗网络的故障诊断方法研究 被引量:2
1
作者 叶子汉 王中华 +2 位作者 姜潮 吕新 张哲 《工程设计学报》 CSCD 北大核心 2024年第2期137-150,159,共15页
在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分... 在强冲击、强辐射、极高温等极端恶劣的工作环境下,机械设备的故障模式复杂多样,获得充足且有效的故障数据变得非常困难甚至难以实现,以致故障诊断的准确性受限,后续检修维护方案难以有效制定。针对这一问题,提出了一种多判别器辅助分类器生成对抗网络的数据增强算法。通过设置3个判别器、1个生成器并添加独立的分类器,构建了新的辅助分类器生成对抗网络模型。针对在该模型训练中存在的不稳定性问题,通过引入Wasserstein距离构造新的损失函数,并采用稳定性更具优势的单边软约束正则化项替换原有的L2梯度惩罚项来解决模型崩溃问题;在此基础上,采用高效通道注意力机制来进一步提高模型的特征提取能力。将所提出的模型应用于扩充机械设备故障数据集,辅助深度学习智能诊断模型的训练。多个故障数据集扩充实验表明,与现有模型相比,新模型所生成数据的质量更高,故障诊断的准确率也得到进一步提高,因此具有较高的应用价值。 展开更多
关键词 多判别器辅助分类器生成对抗网络 高效通道注意力机制 Lipschitz(利普希茨)约束 数据增强 故障诊断
在线阅读 下载PDF
基于类小波辅助分类生成对抗网络的轴承故障数据生成方法
2
作者 焦华超 孙文磊 王宏伟 《中国机械工程》 北大核心 2025年第3期546-557,共12页
利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分... 利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分类生成对抗网络。基于小波变换原理,使用多层神经网络构建类小波变换(WLT)网络,模拟小波变换及逆变换,建立时域与频域信号的映射关系;将WLT网络嵌入辅助分类生成对抗网络(ACGAN)模型中,作为模型生成器的主体;构建两个不同功能的判别器,使得改进的ACGAN在一次训练中能同时学到真实轴承振动信号的时域和频域特征信息。试验结果表明,WLT-ACGAN模型生成的轴承振动信号具有与真实轴承振动信号一致的时域特征和频域特征,数据不平衡时,利用生成信号扩增的平衡数据集构建的故障诊断模型具有较高的准确率。 展开更多
关键词 辅助分类生成对抗网络 类小波变换 轴承故障诊断 数据生成
在线阅读 下载PDF
基于改进生成对抗网络的海上风电机组故障数据增强及诊断 被引量:2
3
作者 魏书荣 殷世杰 +1 位作者 闫梦飞 周海林 《电力系统保护与控制》 北大核心 2025年第1期114-124,共11页
海洋复杂运行环境下,风电机组故障多样,故障有效样本数据明显不足,严重影响了故障诊断效果。为解决海上风电运行数据及故障样本积累不足的问题,提出了一种基于GRA-rACGAN生成对抗网络的数据增强方法,可有效扩充海上风机异常工况数据,并... 海洋复杂运行环境下,风电机组故障多样,故障有效样本数据明显不足,严重影响了故障诊断效果。为解决海上风电运行数据及故障样本积累不足的问题,提出了一种基于GRA-rACGAN生成对抗网络的数据增强方法,可有效扩充海上风机异常工况数据,并通过实际运行数据进行诊断验证。首先,对SCADA系统采集的数据进行灰色关联分析(grey relation analysis,GRA),筛选出与海上风电机组运行状态高度相关的状态变量,对数据进行归一化处理,将特征的最小最大范围添加为每个样本的两个附加属性,避免异常数据干扰,提高数据生成能力。然后,将筛选出的状态变量数据集输入至改进型辅助分类器,采用生成对抗网络进行学习,扩充故障数据。最后,以海上风机实际运行数据的增强结果作为样本进行故障诊断,检验故障数据增强方法的可靠性。通过对海上风电场的实际运行数据实测结果表明,本模型相比于传统数据增强技术可以有效地生成故障样本,提高故障诊断的准确率与稳定性,为海上风机故障的准确预警提供技术支撑。 展开更多
关键词 海上风机 数据增强 灰色关联分析 辅助分类器生成对抗网络 故障诊断
在线阅读 下载PDF
基于改进辅助分类生成对抗网络的风机主轴承故障诊断 被引量:32
4
作者 卢锦玲 张祥国 +2 位作者 张伟 郭鲁豫 闻若彤 《电力系统自动化》 EI CSCD 北大核心 2021年第7期148-154,共7页
基于振动信号的风电机组故障诊断方法是风电安全运维领域研究的重点之一。风电机组主轴承较少发生故障,给运用数据挖掘方法判断故障类型带来很大困难。针对该问题,文中提出了一种用于风电机组主轴承故障诊断的数据增强方法。通过对辅助... 基于振动信号的风电机组故障诊断方法是风电安全运维领域研究的重点之一。风电机组主轴承较少发生故障,给运用数据挖掘方法判断故障类型带来很大困难。针对该问题,文中提出了一种用于风电机组主轴承故障诊断的数据增强方法。通过对辅助分类生成对抗网络(ACGAN)的适应性进行改进,引入梯度惩罚,构建了改进ACGAN框架,以提高其学习稳定性;在判别器网络中引入池化层,以提升其在多分类场景下提取数据特征的能力。仿真结果表明,所提出的改进ACGAN框架能够实现对原始数据分布特征的有效学习,抗噪声干扰性强,相对于原框架训练过程更稳定,生成数据的质量更高;能够有效平衡风电机组主轴承故障振动数据,进一步提升了风电机组主轴承故障诊断的正确率。 展开更多
关键词 风电机组 故障诊断 数据增强 辅助分类生成对抗网络 梯度惩罚
在线阅读 下载PDF
基于辅助分类–边界平衡生成式对抗网络的局部放电数据增强与多源放电识别 被引量:20
5
作者 朱永利 张翼 +1 位作者 蔡炜豪 高盎然 《中国电机工程学报》 EI CSCD 北大核心 2021年第14期5044-5053,共10页
为解决局部放电(partial discharge,PD)源诊断中放电样本的不平衡问题,并克服传统多源放电诊断方法对脉冲聚类分离效果的依赖,该文提出基于辅助分类–边界平衡生成式对抗网络(boundary equilibrium generative adversarial network with... 为解决局部放电(partial discharge,PD)源诊断中放电样本的不平衡问题,并克服传统多源放电诊断方法对脉冲聚类分离效果的依赖,该文提出基于辅助分类–边界平衡生成式对抗网络(boundary equilibrium generative adversarial network with auxiliary classifier,AC-BEGAN)的PD数据增强与多源放电识别方法。首先,对PD脉冲进行同步挤压小波变换(synchrosqueezed wavelet transform,SWT)作为训练样本。然后,在训练稳定性优越的BEGAN基础上,融合条件信息和辅助局放脉冲分类任务构建AC-BEGAN模型,旨在提升模型的生成能力并条件式地扩充训练样本。最后,采用扩充均衡的训练样本微调该辅助分类任务以学习多源放电中各单次脉冲的类别,并将占主导的脉冲标签的组合确定为该多源放电类型。结果表明,该方法相比于传统数据增强技术可以有效地均衡脉冲样本,同时可以克服传统诊断方法对聚类分离效果的依赖,直接实现多源放电诊断。 展开更多
关键词 多源局部放电 同步挤压小波变换 数据增强 辅助分类-边界平衡生成对抗网络
在线阅读 下载PDF
基于生成对抗网络的低分化宫颈癌病理图像分类 被引量:1
6
作者 李晨 张家伟 +1 位作者 张昊 汪茜 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第7期1054-1060,1064,共8页
使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试... 使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试集相同的情况下,该方法可以将总体分类准确率提升约2. 5%,尤其对低分化宫颈癌病理图像有显著效果.通过GAN解决了组织病理学图像无方向性、内容复杂、前景目标规则性差等问题,证明了该方法的有效性及发展潜力. 展开更多
关键词 宫颈癌辅助诊断 组织病理学图像分类 生成对抗网络 特征提取 K-MEANS聚类
在线阅读 下载PDF
基于生成对抗网络的防空体系态势辅助分析
7
作者 刘戎翔 吴琳 +1 位作者 谢智歌 刘虹麟 《系统工程与电子技术》 EI CSCD 北大核心 2022年第8期2522-2529,共8页
针对当前从体系视角对防空体系进行态势分析的模型较为缺乏,且模型结果不易于指挥员分析理解的问题,提出了基于生成对抗网络的防空体系态势辅助分析模型。首先,通过图形化的方法对防空体系态势信息以及作战能力进行描述,便于人类指挥员... 针对当前从体系视角对防空体系进行态势分析的模型较为缺乏,且模型结果不易于指挥员分析理解的问题,提出了基于生成对抗网络的防空体系态势辅助分析模型。首先,通过图形化的方法对防空体系态势信息以及作战能力进行描述,便于人类指挥员更好的理解。然后,利用生成对抗网络模拟人类指挥员态势分析的过程,从浅层态势特征推理得到防空体系能力图。最后,利用多个指标对各类模型的结果进行对比。实验结果表明,所提模型可以从体系视角进行分析,得到防空体系能力图,生成图像的准确率较其他模型至少提高34.1%。 展开更多
关键词 态势辅助分析 防空体系 生成对抗网络
在线阅读 下载PDF
基于生成对抗网络的知识蒸馏数据增强 被引量:2
8
作者 鲁统伟 徐子昕 闵锋 《计算机工程》 CAS CSCD 北大核心 2022年第4期70-80,共11页
在图像分类和工业视觉检测过程中,缺陷样本量少导致神经网络分类器训练效率低及检测精度差,直接采用原始的离散标签又无法使网络分类器学习到不同类别间的相似度信息。针对上述问题,在区域丢弃算法的基础上,提出一种基于生成对抗网络的... 在图像分类和工业视觉检测过程中,缺陷样本量少导致神经网络分类器训练效率低及检测精度差,直接采用原始的离散标签又无法使网络分类器学习到不同类别间的相似度信息。针对上述问题,在区域丢弃算法的基础上,提出一种基于生成对抗网络的知识蒸馏数据增强算法。使用补丁对丢弃区域进行填补,减少区域丢弃产生的非信息噪声。在补丁生成网络中,保留生成对抗网络的编码器-解码器结构,利用编码器卷积层提取特征,通过解码器对特征图上采样生成补丁。在样本标签生成过程中,采用知识蒸馏算法中的教师-学生训练模式,按照交叉检验方式训练教师模型,根据教师模型生成的软标签对学生模型的训练进行指导,提高学生模型对特征的学习能力。实验结果表明,与区域丢弃算法相比,该算法在CIFAR-100、CIFAR-10数据集图像分类任务上的Top-1 Err、Top-5 Err分别降低3.1、0.8、0.5、0.6个百分点,在汽车转向器轴承数据集语义分割任务上的平均交并比和识别准确率分别提高2.8、2.3个百分点。 展开更多
关键词 数据增强 神经网络分类器 工业视觉 生成对抗网络 知识蒸馏
在线阅读 下载PDF
多层次生成对抗网络的动画头像生成方法研究 被引量:7
9
作者 高文超 任圣博 +1 位作者 田驰 赵珊珊 《计算机工程与应用》 CSCD 北大核心 2022年第9期230-237,共8页
现有的动画图像生成方法存在合成图像多样性缺失、局部纹理不清晰、样本方差较小,难以根据细节描述进行生成的问题。基于堆叠式生成对抗网络(StackGAN++)的思想,结合辅助分类器,提出改进模型ACM-GAN(auxiliary classification atteched ... 现有的动画图像生成方法存在合成图像多样性缺失、局部纹理不清晰、样本方差较小,难以根据细节描述进行生成的问题。基于堆叠式生成对抗网络(StackGAN++)的思想,结合辅助分类器,提出改进模型ACM-GAN(auxiliary classification atteched multi-level generative adversial networks,带有辅助分类器的多层次结构生成对抗网络)用于动画人物头像生成。该网络模型由两个生成器和两个判别器堆叠而成,并在判别器中嵌入辅助分类器对生成结果进行约束,使生成样本方差变大,增加生成样本的多样性。为保证合成图像真实度和清晰度,引入特征图空间损失和图像像素空间均值方差损失以最小化合成数据和真实数据的距离。实验结果表明,多层次结构能够有效稳定训练过程,增加图像的边缘细节和局部纹理,同时辅助分类器有效解决模式崩溃问题,提高生成指定类别图像的准确率。ACM-GAN生成图像的FID分数达到27.96,相比于StackGAN++提升23.1%。 展开更多
关键词 动画头像生成 生成对抗网络 多层次结构 辅助分类器
在线阅读 下载PDF
基于生成对抗网络的主机入侵风险识别 被引量:1
10
作者 林英 李元培 潘梓文 《计算机应用与软件》 北大核心 2021年第11期331-337,共7页
随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN... 随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN,该模型能有效解决梯度偏移或梯度消失的问题。TR-GAN相较于AC-GAN及LS-GAN,不但风险识别准确率更稳定,最大识别准确率达到80%,且其风险样本生成模块能在较少训练迭代轮数下就生成与真实攻击样本具有相同特征的攻击样本。生成的攻击样本不但可以作为训练样本的补充,而且可作为部署系统安全策略的参考。 展开更多
关键词 入侵风险识别 生成对抗网络 辅助分类器-生成对抗网络 最小二乘-生成对抗网络 主机特征
在线阅读 下载PDF
基于对抗性双通道编码器的网络入侵检测算法 被引量:2
11
作者 金诗博 张立 《火力与指挥控制》 CSCD 北大核心 2024年第6期75-82,共8页
针对网络流量数据不平衡引起少数类攻击检测率低的问题,提出一种基于对抗性双通道编码器的入侵检测算法。分别采用正常流量和攻击流量来训练变分自编码器模型,构建基于自编码器派生流量数据的多通道表示形式的新特征向量,驱动生成对抗... 针对网络流量数据不平衡引起少数类攻击检测率低的问题,提出一种基于对抗性双通道编码器的入侵检测算法。分别采用正常流量和攻击流量来训练变分自编码器模型,构建基于自编码器派生流量数据的多通道表示形式的新特征向量,驱动生成对抗网络的生成过程朝向目标类,生成的少数类图像,有效地扩充数据集;通过引入CBAM模块来改进生成器的网络结构,融合通道和空间两个方向的特征,增强模型的特征提取能力;将判别器输出调整为单目标分类并加入softmax层,输出Fake、Normal和Attack结果,避免生成器生成无法与所需类型匹配的图像而获得奖励,提高生成图片的质量。实验结果表明,该方法能够有效降低误报率以及提高未知攻击的检测精度,尤其在不平衡数据集中具有更多的优势。 展开更多
关键词 入侵检测算法 辅助生成对抗网络 自编码器 注意力机制
在线阅读 下载PDF
基于改进生成对抗网络的电压暂降事件类型辨识研究 被引量:12
12
作者 沙浩源 梅飞 +4 位作者 李丹奇 李轩 张宸宇 史明明 郑建勇 《中国电机工程学报》 EI CSCD 北大核心 2021年第22期7648-7659,共12页
为缓解特征自提取模型对电压暂降样本数据量的依赖,提高模型的特征抓取能力,该文提出基于改进辅助分类生成对抗网络(auxiliary classifier generative adversarial networks,AC-GAN)的暂降事件类型辨识算法。首先,将暂降三相电压数据转... 为缓解特征自提取模型对电压暂降样本数据量的依赖,提高模型的特征抓取能力,该文提出基于改进辅助分类生成对抗网络(auxiliary classifier generative adversarial networks,AC-GAN)的暂降事件类型辨识算法。首先,将暂降三相电压数据转换为基于空间矢量(space phasor model,SPM)的二维轨迹曲线,以此作为智能模型的输入。然后,对AC-GAN进行改进,通过在判别器内融合卷积注意力模块(convolutional block attention module,CBAM)来改善判断模型的特征自提取能力,从而提高整个AC-GAN网络的性能。利用所生成的与真实样本特性及分布一致的数据,来实现数据增强,以解决非平衡样本条件下特征学习不充分的问题。最后,利用江苏地区实际数据场景验证了所提算法在不同数据条件下准确而稳定的暂降类型辨识能力。 展开更多
关键词 辅助分类生成对抗网络 空间矢量 卷积注意力机制 暂降事件 类型辨识
在线阅读 下载PDF
基于生成对抗网络的偏转人脸转正 被引量:2
13
作者 胡惠雅 盖绍彦 达飞鹏 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第1期116-123,152,共9页
为了提高偏转人脸转正的效果,借鉴双通道生成对抗网络(TP-GAN)双通道生成的思想,将原始网络中的深度卷积生成对抗网络(DCGAN)替换成边界均衡生成对抗网络(BEGAN).在传统两者对抗的网络结构中加入判别人脸身份的分类器,形成三者对抗的网... 为了提高偏转人脸转正的效果,借鉴双通道生成对抗网络(TP-GAN)双通道生成的思想,将原始网络中的深度卷积生成对抗网络(DCGAN)替换成边界均衡生成对抗网络(BEGAN).在传统两者对抗的网络结构中加入判别人脸身份的分类器,形成三者对抗的网络结构.经实验对比可知,与在生成器损失函数中添加约束相比,结构上加入分类器对人脸身份一致性的保持更加有效.TP-GAN存在训练复杂、模式崩溃等难题,使用BEGAN的网络结构,可以避免这些问题,提高训练效率.在Multi-PIE数据集及LFW上的实验结果表明,利用提出的方法能够高效地生成高质量的正面人脸图片,且保留人脸的身份特征. 展开更多
关键词 人脸生成 分类器 模式崩溃 生成对抗网络(GAN)
在线阅读 下载PDF
基于生成对抗网络的情感对话回复生成 被引量:6
14
作者 李凯伟 马力 《计算机工程与应用》 CSCD 北大核心 2022年第18期130-136,共7页
近年来,随着神经网络技术和自然语言处理技术的不断深入发展,基于深度神经网络的对话生成研究取得了突破性的进展,使得人机对话系统广泛应用于生活中,提供便利,比如电商客服、语音助手等。然而,现有的模型倾向于产生一般的回答,普遍缺... 近年来,随着神经网络技术和自然语言处理技术的不断深入发展,基于深度神经网络的对话生成研究取得了突破性的进展,使得人机对话系统广泛应用于生活中,提供便利,比如电商客服、语音助手等。然而,现有的模型倾向于产生一般的回答,普遍缺乏情感因素。针对该问题,提出了一种基于生成对抗网络的情感对话内容生成模型——EC-GAN(emotional conversation generative adversarial network),通过结合多指标奖励与情感编辑约束产生更有意义和可定制的情感回复。对于生成器,使用Seq2Seq模型生成回复,接受判别器的奖励,引导生成句子的回复,提高多样性和情感丰富度;对于判别器,使用双判别器、内容判别器可以确定回复是否属于通用回复,情感判别器判别生成语句的情感与指定的情感类别的一致性,并将判别结果反馈到生成器,指导回复生成。注意观察输入与回复之间的情感变化,验证交互情感的共鸣度存在的方向性。在NLPCC 2017 Shared Task 4——emotional conversation generation的实验表明,模型不仅可以提高回复的流畅性和多样性,同时也显著提高了情感丰富度。 展开更多
关键词 情感对话生成 情感编辑 生成对抗网络 分类器
在线阅读 下载PDF
基于注意力生成对抗网络的图像强光去除
15
作者 赵心驰 姜策 何为 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第4期524-531,共8页
图像中的强光在一定程度上会降低图像的质量,本文致力于从受到强光影响的图像中去除强光并生成清晰图像。为解决这个问题,提出一种带有注意力辅助模块的生成对抗网络。它主要由加入压缩-激励模块的卷积长短期记忆网络和注意力矩阵辅助... 图像中的强光在一定程度上会降低图像的质量,本文致力于从受到强光影响的图像中去除强光并生成清晰图像。为解决这个问题,提出一种带有注意力辅助模块的生成对抗网络。它主要由加入压缩-激励模块的卷积长短期记忆网络和注意力矩阵辅助模块组成,注意力辅助模块可以指导自动编码器生成清晰的图像。该方法可以轻松地移植处理其他类似的图像恢复问题。实验证明,改进后的网络体系结构是有效的并且有一定的意义。 展开更多
关键词 生成对抗网络 注意力矩阵辅助 压缩-激励模块 图像恢复 强光去除
在线阅读 下载PDF
小样本下基于改进ACGAN数据增强的X射线矿石图像分类方法 被引量:6
16
作者 王文 何剑锋 +6 位作者 朱文松 李卫东 聂逢君 夏菲 汪雪元 钟国韵 瞿金辉 《有色金属工程》 CAS 北大核心 2024年第3期122-132,共11页
针对工业领域利用深度学习模型对矿石进行在线分类时,矿石样本稀少导致的模型过拟合、分类准确率低的问题,提出一种结合X射线透射成像技术的矿石数据增强分类方法。该方法基于改进辅助生成对抗网络(Enhance-based Classification ACGAN-... 针对工业领域利用深度学习模型对矿石进行在线分类时,矿石样本稀少导致的模型过拟合、分类准确率低的问题,提出一种结合X射线透射成像技术的矿石数据增强分类方法。该方法基于改进辅助生成对抗网络(Enhance-based Classification ACGAN-gp, EC-ACGAN-gp),采用卷积和连续残差块构建判别器和生成器,引入注意力机制捕捉矿石细节特征,生成高质量样本扩充原始数据集,同时使用带梯度惩罚的Wasserstein距离重构判别器的损失函数提高对抗训练的稳定性,避免模式崩溃。通过增加辅助分类器重建样本标签信息,最终实现矿石样本的类别预测。结果表明,该方法能实现矿石品位分类的精准预测,准确率可达89.62%,比现有传统方法提高3.98%。该模型生成的矿石样本泛化性良好,能够显著提高小样本数据集的泛化性,在SVM、LeNet5、VGGNet、ResNet上测试,精度分别提升了2.83%、2.36%、1.89%和3.74%,可进一步用于提升其他分类模型在矿石品位预测方面的性能。 展开更多
关键词 矿石分类 小样本 数据增强 辅助生成对抗网络 X射线成像 自注意力机制
在线阅读 下载PDF
基于改进RAC-GAN的电动船舶充电负荷场景生成方法
17
作者 廖菲 杨军 +3 位作者 林毅 薛静玮 吴少将 朱睿 《电力系统自动化》 EI CSCD 北大核心 2024年第22期171-181,共11页
随着电动船舶的发展和普及,内河流域的港口用能结构正逐步由燃油转变为清洁的电能,港口负荷将对配电网峰谷差造成显著影响。为准确描述电动船舶充电负荷特征,提出了一种基于改进鲁棒性辅助分类生成对抗网络(RAC-GAN)的电动船舶充电负荷... 随着电动船舶的发展和普及,内河流域的港口用能结构正逐步由燃油转变为清洁的电能,港口负荷将对配电网峰谷差造成显著影响。为准确描述电动船舶充电负荷特征,提出了一种基于改进鲁棒性辅助分类生成对抗网络(RAC-GAN)的电动船舶充电负荷场景生成方法。首先,分析电动船舶充电负荷的特征,构建含环境特征与充电负荷的原始数据集;然后,对RAC-GAN进行改进,加入变分编码器对船舶数据集进行降维,抽取特征信息簇标签,并在判别器中引入噪声过渡模型和卷积层,以提高判别器的抗噪能力,并对网络的损失函数进行重定义;最后,以中国实际港口为例,基于改进的RAC-GAN生成船舶充电负荷的海量场景。仿真结果表明,所提方法能够学习到电动船舶的负荷特征,对噪声具有较高的鲁棒性,并且可以有效生成大量满足真实样本概率分布特征的电动船舶充电负荷场景。 展开更多
关键词 电动船舶 充电负荷 场景生成 鲁棒性辅助分类 生成对抗网络 深度学习
在线阅读 下载PDF
基于边界辅助判别的滚动轴承故障特征增强及诊断方法 被引量:1
18
作者 李佰霖 鲁大臣 +1 位作者 付文龙 陈禹朋 《机电工程》 CAS 北大核心 2024年第4期643-650,共8页
滚动轴承作为机械设备重要部件,对保障设备安全稳定运行具有重要意义。针对实际诊断中的滚动轴承故障数据不平衡问题,提出了一种基于边界辅助判别的辅助分类生成对抗网络模型(BD-ACGAN)。首先,设计了一种可用于提取故障样本边界细节特... 滚动轴承作为机械设备重要部件,对保障设备安全稳定运行具有重要意义。针对实际诊断中的滚动轴承故障数据不平衡问题,提出了一种基于边界辅助判别的辅助分类生成对抗网络模型(BD-ACGAN)。首先,设计了一种可用于提取故障样本边界细节特征的边界辅助判别器,以引导生成器生成更真实的样本,并采用该生成样本解决了数据不平衡的问题;其次,采用了自适应权重损失模块,动态调整了损失权重,使该模型更加关注重要的特征信息,从而提高了该模型的生成质量和特征表达能力;利用生成样本和真实样本数据对BD-ACGAN模型进行了增强训练,提高了该模型的泛化能力和诊断能力;最后,进行了消融实验及对照实验,对BD-ACGAN模型的特征增强能力和诊断效果进行了验证,分别采用美国凯斯西储大学和西安交通大学滚动轴承数据集对模型进行了实验验证。研究结果表明:该BD-ACGAN模型能够有效利用故障样本的边界特征解决数据不平衡问题,并且故障诊断精确度为98.79%,优于其他对照模型,为滚动轴承故障诊断提供了一种新的方法。 展开更多
关键词 轴承故障诊断 数据不平衡 边界辅助判别的辅助分类生成对抗网络 故障特征增强 自适应权重损失 数据集增广
在线阅读 下载PDF
基于改进ACGAN算法的车道排队车辆估计及其分类
19
作者 郭海锋 杨宪赞 金峻臣 《高技术通讯》 EI CAS 北大核心 2020年第11期1169-1177,共9页
针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采... 针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采用Bi-LSTM结构,以速度序列为输入,根据速度与排队车辆的时间相关性,生成最小、最大排队车辆。判别器来自ACGAN,在区分真假样本的同时实现排队车辆到拥堵等级标签的分类。同时,为避免网络训练不稳定、梯度消失的问题,舍弃原ACGAN的真假二分类任务,引入Wasserstein散度来衡量真实序列与生成序列的分布距离,并对相应的目标函数进行优化。结果表明,与其他算法相比,该算法在分类准确率方面提高了3.96%~9.62%,同时总体估计误差最小,验证了利用速度估计车道排队车辆的可行性。 展开更多
关键词 辅助分类器生成对抗网络(ACGAN) 双向长短时记忆(Bi-LSTM) Wasserstein散度 车道级排队车辆估计 分类
在线阅读 下载PDF
面向飞机辅助动力装置在翼剩余寿命预测的性能参数扩增方法 被引量:12
20
作者 刘连胜 张晗星 +2 位作者 刘晓磊 王璐璐 梁军 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第7期107-116,共10页
为解决飞机辅助动力装置(APU)在翼性能参数维度低而无法获得较高准确故障预测结果的问题,提出了一种基于生成对抗网络(GAN)性能参数的扩增方法。首先,在研究GAN原理的基础上,通过网格搜索算法确定生成器与判别器的优化参数;其次,研究面... 为解决飞机辅助动力装置(APU)在翼性能参数维度低而无法获得较高准确故障预测结果的问题,提出了一种基于生成对抗网络(GAN)性能参数的扩增方法。首先,在研究GAN原理的基础上,通过网格搜索算法确定生成器与判别器的优化参数;其次,研究面向APU性能退化参数的扩增方法,为APU的剩余寿命预测提供输入参数;最后,基于中国南方航空股份有限公司机队的APU在翼监测参数,全面验证和评估所提方法的性能。基于GAN生成10维的排气温度参数通过欧几里得距离、皮尔森相关系数和KL散度度量方法进行处理,结果表明生成参数与原始参数具有较好的一致性。基于3种寿命预测方法开展的对比实验中,将生成的10维参数与原始参数共同用于APU剩余寿命预测,与仅将原始性能参数用于APU剩余寿命预测相比,平均绝对误差和均方根误差表征的预测结果准确性至少提升了8.55%和3.62%。 展开更多
关键词 辅助动力装置 生成对抗网络 参数扩增 故障预测 在翼寿命
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部