期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
并行查询下查询执行计划的选择 被引量:6
1
作者 裴泽锋 牛保宁 +1 位作者 张锦文 Amjad Muhammad 《计算机应用》 CSCD 北大核心 2020年第2期420-425,共6页
查询是数据库系统的主要负载,其效率决定了数据库性能的好坏。一个查询存在多种执行计划,当前,查询优化器只能按照数据库系统的配置参数,静态地为查询选择一个较优的执行计划。并行查询间存在复杂多变的资源争用,很难通过配置参数准确反... 查询是数据库系统的主要负载,其效率决定了数据库性能的好坏。一个查询存在多种执行计划,当前,查询优化器只能按照数据库系统的配置参数,静态地为查询选择一个较优的执行计划。并行查询间存在复杂多变的资源争用,很难通过配置参数准确反映,而且同一执行计划在不同情景下的效率并不一致。并行查询下执行计划的选择需考虑查询间的相互影响--查询交互。基于此,提出了一种在并行查询下度量查询受查询交互影响大小的标准QIs。针对并行查询下查询执行计划的选择,还提出了一种动态地为查询选择执行计划的方法TRating,该方法通过比较查询组合中按不同执行计划执行的查询受查询交互影响的大小,选择受查询交互影响较小的执行计划作为该查询的较优执行计划。实验结果表明,TRating方法为查询选择较优执行计划的准确率达61%,相比查询优化器提高了25%;而且在为查询选择次优执行计划时,其准确率也高达69%。 展开更多
关键词 并行查询 查询交互 查询化器 查询执行计划 较优执行计划
在线阅读 下载PDF
并行查询交互度量及执行计划选择 被引量:2
2
作者 柳浩楠 牛保宁 程永强 《计算机工程与应用》 CSCD 北大核心 2022年第17期72-80,共9页
查询是数据库系统的主要负载,查询的执行效率直接影响着系统的性能。目前,由于查询交互(query interaction,QI)复杂多变,查询优化器不能准确地评估查询进入系统产生的影响,很难为并行查询选择较优执行计划。将查询的平均响应时间、平均... 查询是数据库系统的主要负载,查询的执行效率直接影响着系统的性能。目前,由于查询交互(query interaction,QI)复杂多变,查询优化器不能准确地评估查询进入系统产生的影响,很难为并行查询选择较优执行计划。将查询的平均响应时间、平均执行时间、平均I/O时间和平均缓冲区命中率作为QI的特征参数,表示QI;提出多维度查询交互度量(multi-dimensional measurement of query interaction,MMQI)模型和执行计划选择(execution plan selection,EPS)模型,采用深度神经网络,在度量QI的基础上,把QI作为主要因素,为并行查询选择较优执行计划。考虑到查询执行计划是由一系列关系运算组成的,以及QI具有时域特性,MMQI采用双向长短期记忆神经网络(bidirectional long-short term memory,Bi-LSTM)度量QI,从查询执行计划提取特征作为输入,将QI特征参数的改变作为输出,预测查询采用不同执行计划进入系统后QI特征参数的改变;EPS把预测到的查询特征参数的改变作为查询交互特征(feature of query interaction,FQI),与查询候选执行计划特征(features of candidate plan,FCP)融合,作为另一个Bi-LSTM的输入,为查询动态地选择较优执行计划。在PostgreSQL上的实验表明,MMQI-EPS比查询优化器选择较优执行计划的平均准确率提高38.6个百分点。 展开更多
关键词 查询交互 并行查询 多维度查询交互度量-执行计划选择(MMQI-EPS) 较优执行计划 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部