期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合EEMD和多通道dTCN-LSTM的车辆载重状态识别模型
1
作者 徐慧琳 孙子文 《小型微型计算机系统》 北大核心 2025年第5期1112-1119,共8页
为精确识别后装车载重状态,研究集成经验模态分解(EEMD)和多通道双重膨胀因果卷积(dTCN)-长短期记忆神经网络(LSTM)融合的识别模型.利用滑动窗口截取载重时序特征向量构建特征向量矩阵,通过EEMD将特征向量矩阵分解为多个子分量矩阵并筛... 为精确识别后装车载重状态,研究集成经验模态分解(EEMD)和多通道双重膨胀因果卷积(dTCN)-长短期记忆神经网络(LSTM)融合的识别模型.利用滑动窗口截取载重时序特征向量构建特征向量矩阵,通过EEMD将特征向量矩阵分解为多个子分量矩阵并筛选不含噪声的子分量矩阵,降低时序数据噪声;由不同深度dTCN堆叠而成的多通道提取不同子分量矩阵的局部特征,各通道提取的局部特征相加送入LSTM中提取全局特征形成特征向量;最后由全连接网络将特征向量识别为装载、卸载、运行3种运行状态.采集真实车辆运行数据作为实验数据集,实验结果表明,与支持向量机(SVM)、卷积神经网络(CNN)、LSTM、CNN-LSTM、EMD-CNN-GRU、VMD-TCN-LSTM模型相比,识别准确率分别提高6.82%、5.66%、3.94%、3.21%、3.52%. 展开更多
关键词 集成经验模态分解 多通道 双重膨胀因果卷积 长短期记忆神经网络 载重状态识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部