Ships navigating in ice-covered regions will inevitably collide with ice ridges.Compared to other ice bodies,ice ridges exhibit more complicated mechanical behaviors due to the scale and structure characteristics.In t...Ships navigating in ice-covered regions will inevitably collide with ice ridges.Compared to other ice bodies,ice ridges exhibit more complicated mechanical behaviors due to the scale and structure characteristics.In this paper,nonlinear finite element method is used to investigate the interaction between a polar ship and an ice ridge.The ice ridge is modelled as elastic-plastic material based on Drucker-Prager yield function,with the consideration of the influence of cohesion,friction angle and material hardening.The material model is developed in LS-DYNA and solved using semi-implicit mapping algorithm.The stress distribution of ice ridge and ship,and the ice load history are evaluated through the simulation of multiple collisions.In addition,parametric analysis is performed to investigate the influence of ridge thickness and impact velocity on the ice load and energy absorption.展开更多
The development of open-pit mines can adversely affect and even damage existing access tunnels. To ensure the safety and serviceability of them, it is essential to know potential adverse effects of the mining sequence...The development of open-pit mines can adversely affect and even damage existing access tunnels. To ensure the safety and serviceability of them, it is essential to know potential adverse effects of the mining sequence on existing tunnels such as displacements of the lining and additional loads on the lining. In this paper, three-dimensional numerical parametric study is performed to explore this complex interaction. This study investigates the effects of different parameters that may affect the tunnel response. These parameters are: excavation sequence method, horizontal/vertical stress ratio, slope angle, and tunnel diameter. This study shows that the mining sequence affects the stability of the tunnels. The open-pit mining activities lead to both higher axial forces in rock bolts and normal forces and bending moments in the lining. The results of the analysis also demonstrate that the mining sequence causes tunnel heave and significant tensile forces in the lining. Based on the study in this paper a better understanding of the interaction between oDen-oit minin~ seouence and tunnels will he ohtained展开更多
文摘Ships navigating in ice-covered regions will inevitably collide with ice ridges.Compared to other ice bodies,ice ridges exhibit more complicated mechanical behaviors due to the scale and structure characteristics.In this paper,nonlinear finite element method is used to investigate the interaction between a polar ship and an ice ridge.The ice ridge is modelled as elastic-plastic material based on Drucker-Prager yield function,with the consideration of the influence of cohesion,friction angle and material hardening.The material model is developed in LS-DYNA and solved using semi-implicit mapping algorithm.The stress distribution of ice ridge and ship,and the ice load history are evaluated through the simulation of multiple collisions.In addition,parametric analysis is performed to investigate the influence of ridge thickness and impact velocity on the ice load and energy absorption.
文摘The development of open-pit mines can adversely affect and even damage existing access tunnels. To ensure the safety and serviceability of them, it is essential to know potential adverse effects of the mining sequence on existing tunnels such as displacements of the lining and additional loads on the lining. In this paper, three-dimensional numerical parametric study is performed to explore this complex interaction. This study investigates the effects of different parameters that may affect the tunnel response. These parameters are: excavation sequence method, horizontal/vertical stress ratio, slope angle, and tunnel diameter. This study shows that the mining sequence affects the stability of the tunnels. The open-pit mining activities lead to both higher axial forces in rock bolts and normal forces and bending moments in the lining. The results of the analysis also demonstrate that the mining sequence causes tunnel heave and significant tensile forces in the lining. Based on the study in this paper a better understanding of the interaction between oDen-oit minin~ seouence and tunnels will he ohtained