期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向GPS数据的出租车载客路线层次化推荐模型
1
作者 张德城 刘毅志 +1 位作者 赵肄江 廖祝华 《计算机工程》 CAS CSCD 北大核心 2024年第12期163-173,共11页
出租车载客推荐能够有效提高司机利润,对于提升交通效率、改善城市出行体验以及推动智能交通的发展都具有重要意义。现有方法一般直接向司机进行载客区域或载客路线推荐,没有考虑将这两者进行结合,不仅面临数据稀疏性问题,而且难以兼顾... 出租车载客推荐能够有效提高司机利润,对于提升交通效率、改善城市出行体验以及推动智能交通的发展都具有重要意义。现有方法一般直接向司机进行载客区域或载客路线推荐,没有考虑将这两者进行结合,不仅面临数据稀疏性问题,而且难以兼顾推荐准确性与实时性能。为此,提出一种面向GPS数据的出租车载客路线层次化推荐模型,其中采用了抗稀疏性的极深因子分解机(xDeepFM)、深度Q网络(DQN)强化学习算法以及层次化推荐策略。首先,离线推荐高载客概率的大网格,以减少在线计算量;然后,当出租车司机提出实时载客推荐需求时,在离线推荐的大网格内进一步推荐高载客概率的小网格;最后,给司机规划一条到小网格的载客路线。在滴滴公司数据集上进行实验,结果表明,与现有的一些先进方法相比,该方法可以使空载出租车司机的巡航时间至少减少36%,巡航距离至少减少26%,并且推荐时间仅需85 ms。 展开更多
关键词 载客路线推荐 载客区域推荐 层次化推荐 极深因子分解机 深度Q网络
在线阅读 下载PDF
基于稀疏轨迹数据的出租车载客区域推荐 被引量:3
2
作者 廖祝华 张健 +3 位作者 刘毅志 肖浩 赵肄江 刘建勋 《电子学报》 EI CAS CSCD 北大核心 2020年第11期2178-2185,共8页
基于短期出租车轨迹数据的载客区域推荐能极大减少系统开销,提高推荐效率,但常伴随着数据稀疏性的问题.针对该问题,本文提出了一种融合地理信息的隐语义模型-GeoLFM.该模型通过将出租车司机所处的客观地理环境信息,融合到司机-载客区域... 基于短期出租车轨迹数据的载客区域推荐能极大减少系统开销,提高推荐效率,但常伴随着数据稀疏性的问题.针对该问题,本文提出了一种融合地理信息的隐语义模型-GeoLFM.该模型通过将出租车司机所处的客观地理环境信息,融合到司机-载客区域矩阵分解的过程中,从而弥补数据稀疏性带来的不足.同时,根据出租车实时的空间位置信息,为身处不同地点的出租车推荐不同的载客区域.实验证明,本文提出的方法与常用方法相比,推荐结果与真实的出租车司机载客情况间的平均绝对误差和均方根误差都得到大幅降低,较好的提升了推荐效果. 展开更多
关键词 轨迹挖掘 载客推荐 数据稀疏性 隐语义模型 地理信息
在线阅读 下载PDF
基于分时MDP的出租车载客预测推荐技术研究 被引量:3
3
作者 王桐 高山 +1 位作者 龚慧雯 孙博 《通信学报》 EI CSCD 北大核心 2021年第2期37-51,共15页
针对出租车盲目寻客导致空载率高的问题,提出了一种出租车载客热点推荐策略,以最大程度优化匹配乘客过程,提高寻客效率。基于出租车历史轨迹数据,结合热点乘客信息的时间序列特性,提出基于循环神经网络的分段预测(SPBR)算法,以及基于分... 针对出租车盲目寻客导致空载率高的问题,提出了一种出租车载客热点推荐策略,以最大程度优化匹配乘客过程,提高寻客效率。基于出租车历史轨迹数据,结合热点乘客信息的时间序列特性,提出基于循环神经网络的分段预测(SPBR)算法,以及基于分时马尔可夫决策过程(TMDP)的载客推荐模型。实验表明,SPBR算法预测结果的RMSE比SVR、CART和BPNN等算法分别降低了67.6%、71.1%和64.5%;TMDP模型出租车期望回报比历史期望提升了35.9%。 展开更多
关键词 出租车空载率 分时马尔可夫决策过程 热点预测 分段预测方法 载客推荐模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部