期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于混合模型的多类型机场航班过站时间预测
1
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升机算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
Rmcvit:一种融合卷积与自注意力的轻量级图像识别算法
2
作者 孙红 吴一凡 +2 位作者 徐广辉 田鑫驰 朱江明 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1929-1934,共6页
为了解决目前基于Transformer的模型需要较大的参数量而无法有效应用在资源受限的移动端设备中,提出一种融合卷积与Transformer两者优势的轻量级混合模型.模型中Rmcvit Block将输入张量分成多个通道组,利用深度可分离卷积和跨通道维度... 为了解决目前基于Transformer的模型需要较大的参数量而无法有效应用在资源受限的移动端设备中,提出一种融合卷积与Transformer两者优势的轻量级混合模型.模型中Rmcvit Block将输入张量分成多个通道组,利用深度可分离卷积和跨通道维度的互协方差注意力来增加感受野并融合多尺度特征,并融合unflod模块在保证其空间顺序的前提下,降低每个向量序列(token)送入自注意力模块后的计算消耗.基于整理后的Imagenet数据集的对比实验,RmcVit-M以5.81M的参数量大小达到了85.2%的准确率,其模型相关变体性能超过了参数量相似的Transformer模型和卷积神经网络.结果表明,Rmcvit能够有效结合卷积神经网络与Transformer的优势,达到了以较少的模型参数获得更高准确率的目的. 展开更多
关键词 卷积神经网络 互协方差注意力 轻量级混合模型 深度可分离卷积 多尺度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部