针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免...针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免干扰因素影响的优势,结合人脸对齐环节产生的关键特征点信息,对深度残差网络结构进行简化和合理设计,实现对关键特征信息和全局信息的提取.为避免特征提取过程中丢失重要特征信息,该模型在新残差网络中加入结合空间和通道的注意力机制进行辅助.在公开的四个标准人脸数据集上的仿真实验表明,该模型识别速度在接近主流轻量级人脸识别方法的同时,平均识别精度比MobiFace提高了0.6%.展开更多
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。...为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。展开更多
文摘针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免干扰因素影响的优势,结合人脸对齐环节产生的关键特征点信息,对深度残差网络结构进行简化和合理设计,实现对关键特征信息和全局信息的提取.为避免特征提取过程中丢失重要特征信息,该模型在新残差网络中加入结合空间和通道的注意力机制进行辅助.在公开的四个标准人脸数据集上的仿真实验表明,该模型识别速度在接近主流轻量级人脸识别方法的同时,平均识别精度比MobiFace提高了0.6%.
文摘为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。