期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
1
作者 曾金灿 何耿生 +3 位作者 李姚旺 杜尔顺 张宁 朱浩骏 《上海交通大学学报》 北大核心 2025年第6期746-757,共12页
电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电... 电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电-碳间的相关关系,以电力历史数据为基础,基于机器学习方法提出一种电力行业短期以电折碳方法,实时估算电力行业短期碳排放情况.该方法使用卷积神经网络进行特征提取,并采用轻量级梯度提升树算法开展基于特征提取值的碳排放测算.此外,为了提升模型的泛化能力和鲁棒性,在模型训练中采用K折交叉验证技术,在模型参数优化过程中采用网格搜索技术.最后,为了验证所提模型的有效性,对比所提模型和其他机器学习模型在同等数据集划分条件下分别基于日度数据集与小时数据集中进行训练的效果.结果表明:所提模型在效果评估和测算值与目标值分布分析中均优于其他模型,能够较好地反映电力行业的短期碳排放情况. 展开更多
关键词 以电折碳 卷积神经网络 轻量级梯度提升树算法 碳排放 机器学习 组合模型
在线阅读 下载PDF
基于Bayes超参数优化梯度提升树的心脏病预测方法
2
作者 王海燕 焦增晨 +2 位作者 赵剑 安天博 鞠熠 《吉林大学学报(理学版)》 北大核心 2025年第2期472-478,共7页
针对传统机器学习算法在数据集Cleveland和Hungary上预测准确率低的问题,提出一种基于Bayes超参数优化梯度提升树的心脏病预测方法.首先,采用K-最近邻算法对数据集中的缺失值进行填补,用Min-Max标准化、One-Hot编码处理数据,并基于梯度... 针对传统机器学习算法在数据集Cleveland和Hungary上预测准确率低的问题,提出一种基于Bayes超参数优化梯度提升树的心脏病预测方法.首先,采用K-最近邻算法对数据集中的缺失值进行填补,用Min-Max标准化、One-Hot编码处理数据,并基于梯度提升树算法进行心脏病预测;其次,采用Bayes优化和十倍交叉验证的方式搜寻算法的最佳超参数组合.实验结果表明,优化后的梯度提升树算法在心脏病数据集Cleveland上预测准确率可达90.2%,在心脏病数据集Hungary上预测准确率可达81.4%,优于决策树、支持向量机、K-最近邻等传统机器学习方法,可辅助医生进行心脏病诊断. 展开更多
关键词 心脏病预测 K-最近邻算法 梯度提升 Bayes优化
在线阅读 下载PDF
基于梯度提升机的中国陆地生态系统土壤异养呼吸预测
3
作者 张金文 王文龙 +4 位作者 倪荣雨 张彬梅 曾爱聪 郭福涛 苏漳文 《浙江农林大学学报》 北大核心 2025年第4期774-783,共10页
【目的】极限梯度提升树(XGBoost)与轻量级梯度提升机(LightGBM)模型在梯度提升决策树框架下各具优势,系统对比两者在土壤异养呼吸估算中的性能差异,有助于深入挖掘梯度提升机在生态系统碳通量预测中的潜力,并推动该类模型在大尺度碳循... 【目的】极限梯度提升树(XGBoost)与轻量级梯度提升机(LightGBM)模型在梯度提升决策树框架下各具优势,系统对比两者在土壤异养呼吸估算中的性能差异,有助于深入挖掘梯度提升机在生态系统碳通量预测中的潜力,并推动该类模型在大尺度碳循环模拟中的优化应用。【方法】基于全球土壤呼吸数据库(SRDB),构建了中国陆地生态系统的土壤异养呼吸及环境因子数据库,利用XGBoost和LightGBM 2种梯度提升机模型对2000—2023年中国陆地生态系统土壤异养呼吸进行估算与对比分析,并进一步探讨中国陆地生态系统土壤异养呼吸的空间分布趋势及其主要影响因素。【结果】①2个模型均展现出较高的预测精度(测试集决定系数均为0.91),XGBoost模型在训练集上表现出较强的拟合能力,LightGBM模型则在测试集上能够更好地控制误差。②在2000—2023年,XGBoost与LightGBM模型估算的中国陆地生态系统土壤异养呼吸年平均值分别为299.57和294.60 g·m^(−2)·a^(−1),年际变化幅度分别为19.51和32.43 g·m^(−2)·a^(−1)。③中国陆地生态系统土壤异养呼吸呈现南高北低的空间分布特征,主要受土壤性质和叶面积指数影响。这一空间异质性反映了土壤异养呼吸对环境变化的不同响应。【结论】梯度提升机模型在大尺度土壤异养呼吸建模与预测中表现出良好的适应性,能够有效捕捉土壤异养呼吸的时空变化特征,展现出较强的预测能力. 展开更多
关键词 土壤异养呼吸估算 陆地生态系统 极限梯度提升(XGBoost)模型 轻量级梯度提升机(LightGBM)模型
在线阅读 下载PDF
基于梯度提升回归树算法的生活用纸皱纹等级软测量模型 被引量:3
4
作者 张冬启 洪蒙纳 +1 位作者 李继庚 满奕 《中国造纸》 CAS 北大核心 2020年第6期36-42,共7页
皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、... 皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、皱纹深度、皱纹频率3个主要指标进行了建模,并通过预测这3个指标实现对皱纹等级的在线实时软测量。通过对比工业实测数据,发现该模型对表面粗糙度、皱纹深度、皱纹频率预测精度较高,测试数据的平均相对误差均小于5%。该模型解决了生活用纸皱纹等级在线软测量的问题,对生活用纸生产过程的质量控制提供了新的方法和依据。 展开更多
关键词 起皱 皱纹等级 软测量 梯度提升回归算法
在线阅读 下载PDF
梯度提升树算法在陕北风电场短期风电功率预测中的应用 被引量:14
5
作者 孙川永 彭友兵 +4 位作者 刘志亮 郝赢玺 吴怡 东琦 郑永恒 《电网与清洁能源》 北大核心 2022年第4期124-128,134,共6页
为了对地形和气候条件复杂的陕北风电场短期风电功率进行准确预测,通过将(weather research and forecasting,WRF)模式输出结果和同期实测风电功率资料相结合,利用梯度提升树算法进行预报气象场和实测风电功率之间的统计关系分析,从而... 为了对地形和气候条件复杂的陕北风电场短期风电功率进行准确预测,通过将(weather research and forecasting,WRF)模式输出结果和同期实测风电功率资料相结合,利用梯度提升树算法进行预报气象场和实测风电功率之间的统计关系分析,从而建立了一套陕北风电场短期风电功率预测模型。以陕北靖边某风电场为例,预测结果表明:所提模型年平均预测准确率伟15.7%;月平均归一化均方根误差在20%以下。模型对风电场风电功率预测精度较好。 展开更多
关键词 梯度提升算法 风电功率 WRF
在线阅读 下载PDF
基于梯度提升树算法的玉米施肥模型构建 被引量:5
6
作者 卓越 严海军 《水资源与水工程学报》 CSCD 2020年第4期223-228,237,共7页
为了模拟作物的土壤养分含量、施肥量与产量之间的非线性关系,利用玉米"3414"试验数据进行插值,以土壤养分含量和施肥量作为输入量,产量作为输出量,使用梯度提升树(GBDT)算法建立施肥模型,并与BP神经网络(BPNN)、支持向量回归... 为了模拟作物的土壤养分含量、施肥量与产量之间的非线性关系,利用玉米"3414"试验数据进行插值,以土壤养分含量和施肥量作为输入量,产量作为输出量,使用梯度提升树(GBDT)算法建立施肥模型,并与BP神经网络(BPNN)、支持向量回归(SVR)、随机森林(RF)算法建立的施肥模型进行对比。结果表明:应用构建的GBDT模型得到的玉米产量平均相对误差、平均绝对误差和均方根误差分别为0.46%、48.7和62.2 kg/hm^2,优于其他3种算法。基于GBDT算法的施肥模型在模拟土壤养分含量、施肥量与产量之间关系时具有较高精度,对于指导精准施肥具有较强的应用价值。 展开更多
关键词 施肥模型 梯度提升算法 施肥量 产量 玉米
在线阅读 下载PDF
基于梯度提升树的河南小麦成本收益分析 被引量:1
7
作者 温建 曾一鸣 +2 位作者 夏枫苒 汪松玉 雷丽娟 《江西农业学报》 CAS 2022年第12期204-210,共7页
基于2006—2020年河南省小麦生产数据,运用梯度提升树算法和文献分析法,分析了河南省小麦生产过程中成本和收益关系。结果表明:(1)2009—2019年的河南省小麦平均种植面积约占全国的23%,平均产量约占全国的27%。(2)通过对小麦生产过程中... 基于2006—2020年河南省小麦生产数据,运用梯度提升树算法和文献分析法,分析了河南省小麦生产过程中成本和收益关系。结果表明:(1)2009—2019年的河南省小麦平均种植面积约占全国的23%,平均产量约占全国的27%。(2)通过对小麦生产过程中的总成本、总产值、净利润、成本利润率以及平均售价进行分析发现,2016—2020年小麦的净利润情况不容乐观,大部分为负值。(3)气候不适、病虫害等自然原因大幅增加了小麦生产的成本。(4)梯度提升树模型的结果显示,在影响小麦生产成本的因子中,人工成本占比最大。综上,提出了降低河南省小麦生产成本和提高其经济效益的建议和对策,即改善投入结构、规模化种植、依靠科技、降低生产成本、政府加大支持和投入力度。 展开更多
关键词 梯度提升算法 小麦 成本收益 河南省
在线阅读 下载PDF
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
8
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升(XGBoost)算法
在线阅读 下载PDF
面向高维特征和多分类的分布式梯度提升树 被引量:13
9
作者 江佳伟 符芳诚 +1 位作者 邵蓥侠 崔斌 《软件学报》 EI CSCD 北大核心 2019年第3期784-798,共15页
梯度提升树算法由于其高准确率和可解释性,被广泛地应用于分类、回归、排序等各类问题.随着数据规模的爆炸式增长,分布式梯度提升树算法成为研究热点.虽然目前已有一系列分布式梯度提升树算法的实现,但是它们在高维特征和多分类任务上... 梯度提升树算法由于其高准确率和可解释性,被广泛地应用于分类、回归、排序等各类问题.随着数据规模的爆炸式增长,分布式梯度提升树算法成为研究热点.虽然目前已有一系列分布式梯度提升树算法的实现,但是它们在高维特征和多分类任务上性能较差,原因是它们采用的数据并行策略需要传输梯度直方图,而高维特征和多分类情况下梯度直方图的传输成为性能瓶颈.针对这个问题,研究更加适合高维特征和多分类的梯度提升树的并行策略,具有重要的意义和价值.首先比较了数据并行与特征并行策略,从理论上证明特征并行更加适合高维和多分类场景.根据理论分析的结果,提出了一种特征并行的分布式梯度提升树算法FP-GBDT.FP-GBDT设计了一种高效的分布式数据集转置算法,将原本按行切分的数据集转换为按列切分的数据表征;在建立梯度直方图时,FP-GBDT使用一种稀疏感知的方法来加快梯度直方图的建立;在分裂树节点时,FP-GBDT设计了一种比特图压缩的方法来传输数据样本的位置信息,从而减少通信开销.通过详尽的实验,对比了不同并行策略下分布式梯度提升树算法的性能,首先验证了FP-GBDT提出的多种优化方法的有效性;然后比较了FP-GBDT与XGBoost的性能,在多个数据集上验证了FP-GBDT在高维特征和多分类场景下的有效性,取得了最高6倍的性能提升. 展开更多
关键词 梯度提升 数据并行 特征并行 系统实现 算法比较
在线阅读 下载PDF
基于异构网络特征与梯度提升决策树的协同药物预测 被引量:5
10
作者 聂丽霞 刘辉 邹凌 《计算机应用与软件》 北大核心 2020年第4期48-52,共5页
组合药物在复杂疾病特别是癌症的治疗中发挥越来越重要的作用。以组合药物靶标为初始节点在药物-蛋白质异构网络上执行重启型随机游走,将收敛后的概率分布作为药物组合的特征向量,训练梯度提升决策树模型来预测新的药物组合。在标准药... 组合药物在复杂疾病特别是癌症的治疗中发挥越来越重要的作用。以组合药物靶标为初始节点在药物-蛋白质异构网络上执行重启型随机游走,将收敛后的概率分布作为药物组合的特征向量,训练梯度提升决策树模型来预测新的药物组合。在标准药物组合数据集的性能评估表明,该方法比其他七种典型分类器和传统的提升算法具有更好的性能,且基于异构网络的特征显著提升了各分类器的性能,AUC值从0.528提升至0.909。 展开更多
关键词 药物组合 异构网络 随机游走 特征向量 梯度提升算法
在线阅读 下载PDF
基于BO-LightGBM算法的XLPE配电电缆绝缘状态评估
11
作者 罗正均 叶刚 +3 位作者 周箩鱼 李涛 陈楠 张志熙 《绝缘材料》 北大核心 2025年第3期131-140,共10页
为提升电缆绝缘状态评估的精度,本文提出了一种基于贝叶斯优化(BO)算法与轻量级梯度提升机(LightGBM)算法的电缆绝缘状态评估方法。首先将数据集中所有特征进行组合,形成不同的特征子集,通过遍历所有的特征子集,找到五折交叉验证的准确... 为提升电缆绝缘状态评估的精度,本文提出了一种基于贝叶斯优化(BO)算法与轻量级梯度提升机(LightGBM)算法的电缆绝缘状态评估方法。首先将数据集中所有特征进行组合,形成不同的特征子集,通过遍历所有的特征子集,找到五折交叉验证的准确率最高所对应的特征组合,完成对输入特征的筛选。然后使用BO算法对LightGBM中的7个超参数进行寻优。最后利用本文所提出的BO-LightGBM算法完成对电缆绝缘状态的评估。结果表明:本文提出的特征子集法与主成分分析法和互信息筛选法相比能更好地提升模型表现;经过BO算法优化后,LightGBM模型的精度能得到进一步的提升,与粒子群优化算法(PSO)和遗传算法优化(GA)相比,BO算法的计算效率能在几乎相同的精度下分别提升约80%和86.9%;与其他常用机器学习算法进行对比,本文模型的相关性能指标均为最优。 展开更多
关键词 XLPE电缆 状态评估 机器学习 贝叶斯优化算法 轻量级梯度提升算法
在线阅读 下载PDF
基于XGBoost算法划痕损伤PVC-P土工膜力学性能预测
12
作者 张宪雷 刘建群 张文慧 《水电能源科学》 北大核心 2025年第5期111-115,共5页
面膜堆石坝上游坝面膜防渗结构因施工操作不当或多孔隙介质垫层界面特性易造成PVC-P土工膜物理性划痕损伤,为判别划痕损伤PVC-P土工膜能否满足工程安全运行要求,以划痕损伤PVC-P土工膜断裂强度/延伸率试验数据为依托,构建了基于极端梯... 面膜堆石坝上游坝面膜防渗结构因施工操作不当或多孔隙介质垫层界面特性易造成PVC-P土工膜物理性划痕损伤,为判别划痕损伤PVC-P土工膜能否满足工程安全运行要求,以划痕损伤PVC-P土工膜断裂强度/延伸率试验数据为依托,构建了基于极端梯度提升(XGBoost)算法的预测模型,将该模型预测结果与随机森林(RF)算法预测结果进行比较,选用平均绝对误差(M MAE)、平均绝对百分比误差(M_(MAPE))、均方根误差(R_(RMSE))和决定系数(R^(2))作为评价指标评估了预测精度,并运用SHAP算法获得影响作用较大的划痕损伤阈值。结果表明,基于XGBoost算法的预测模型预测精度更高,SHAP法能够合理解释模型的预测结果,划痕角度是影响损伤后力学性能的主要因素。研究结果为工程技术人员准确预判划痕损伤PVC-P土工膜力学性能提供了参考。 展开更多
关键词 极端梯度提升(XGBoost)算法 随机森林(RF)算法 力学性能预测 PVC-P土工膜 断裂强度 断裂延伸率
在线阅读 下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:9
13
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
在线阅读 下载PDF
基于斜回归树及其集成算法的静态电压稳定规则提取 被引量:8
14
作者 贾宏阳 侯庆春 +2 位作者 刘羽霄 张宁 范越 《电力系统自动化》 EI CSCD 北大核心 2022年第1期51-59,共9页
可再生能源渗透率的增加给电力系统安全稳定运行带来持续性的挑战,传统方法分析系统稳定性、控制电网稳定运行变得愈加困难。针对这一难题,提出了内嵌安全稳定约束的电力系统优化运行框架以及用于电力系统安全稳定规则提取的斜回归树及... 可再生能源渗透率的增加给电力系统安全稳定运行带来持续性的挑战,传统方法分析系统稳定性、控制电网稳定运行变得愈加困难。针对这一难题,提出了内嵌安全稳定约束的电力系统优化运行框架以及用于电力系统安全稳定规则提取的斜回归树及其集成算法。该算法首先优化斜划分系数以训练单棵斜回归树,然后利用boosting思想集成斜回归树,并通过正则化方法保证树的稀疏度,增强算法的可解释性。相比神经网络等黑箱模型,文中提出的方法能够提取显式安全稳定规则,为内嵌安全稳定约束的电力系统优化运行奠定了基础。最后,以静态电压稳定问题为例验证算法的有效性,算例验证结果表明所提算法具有良好的可解释性、较强的表示能力和较高的集成效率。 展开更多
关键词 静态电压稳定 高比例可再生能源 集成学习 斜回归 极端梯度提升算法
在线阅读 下载PDF
基于α-shape与SSA-XGBoost算法的无人机点云孔洞修补
15
作者 宋晓辉 吕富强 +2 位作者 窦彩英 唐诗华 党梦鑫 《海洋测绘》 CSCD 北大核心 2024年第4期69-73,共5页
针对极限梯度提升树算法在进行无人机点云孔洞修补时核心超参数难以选取、点云孔洞修补范围识别困难以及孔洞修补精度较低等问题,提出基于麻雀搜索算法优化极限梯度提升树的点云孔洞修补方法。首先利用α-shape算法进行点云的孔洞识别,... 针对极限梯度提升树算法在进行无人机点云孔洞修补时核心超参数难以选取、点云孔洞修补范围识别困难以及孔洞修补精度较低等问题,提出基于麻雀搜索算法优化极限梯度提升树的点云孔洞修补方法。首先利用α-shape算法进行点云的孔洞识别,在此基础上,获取点云孔洞和周围点云的位置信息并将其作为模型的输入样本。再利用麻雀搜索算法优化极限梯度提升树算法中的核心超参数,构建SSA-XGBoost点云孔洞修补模型,并将该模型应用于无人机点云孔洞的修补中。最后将SSA-XGBoost与XGBoost、BP神经网络两组算法进行预测精度的对比。实验结果表明:SSA-XGBoost模型的预测结果相较于其它两组对比算法预测精度更高,在点云孔洞修补方面具有一定的意义。 展开更多
关键词 摄影测量 孔洞修补 α-shape算法 麻雀搜索算法 极限梯度提升
在线阅读 下载PDF
基于混合模型的多类型机场航班过站时间预测
16
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
17
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升 改进粒子群优化算法
在线阅读 下载PDF
基于集成学习的混凝土抗压强度预测模型研究
18
作者 周继发 曾晓辉 +8 位作者 郑振华 涂金根 郭桃明 孙晗凌 谢友均 龙广成 唐卓 郭宏 潘自立 《中南大学学报(自然科学版)》 北大核心 2025年第5期1981-1992,共12页
为准确预测混凝土抗压强度,利用灰狼优化算法(GWO)对轻量级梯度提升机(LGBM)的超参数进行优化。首先,以水胶比、矿渣替代比例、粉煤灰替代比例、高性能减水剂占胶凝材料比例、砂率和龄期为输入,以抗压强度为输出,构建GWO-LGBM预测模型;... 为准确预测混凝土抗压强度,利用灰狼优化算法(GWO)对轻量级梯度提升机(LGBM)的超参数进行优化。首先,以水胶比、矿渣替代比例、粉煤灰替代比例、高性能减水剂占胶凝材料比例、砂率和龄期为输入,以抗压强度为输出,构建GWO-LGBM预测模型;其次,评估模型在训练集和测试集上的效果,验证GWO对LGBM超参数优化的有效性;第三,将模型应用于全新数据,检验其泛化能力;最后,基于GWO-LGBM模型分析各输入参数对抗压强度的影响,验证模型的预测合理性。研究结果表明:GWOLGBM模型在训练集和测试集中混凝土抗压强度预测的均方根误差分别为1.68 MPa和3.49 MPa,预测值与实际值的拟合度分别达到0.99和0.95,解决了LGBM易陷入局部最优的问题;模型迁移到全新数据集时,83%的数据预测相对误差小于10%,展现出较强的泛化能力。水胶比增大会降低混凝土抗压强度;矿渣和粉煤灰掺量增加会降低混凝土早期强度,对后期强度影响较小;当水胶比一定时,存在一个最佳砂率使抗压强度最大;模型捕获结果与影响抗压强度的理论结果一致,验证了其预测结果的合理性。 展开更多
关键词 混凝土 抗压强度 集成学习 轻量级梯度提升 灰狼优化算法
在线阅读 下载PDF
基于改进Smote-GBDT算法的岩爆预测模型 被引量:6
19
作者 宋英华 江晨 +1 位作者 李墨潇 齐石 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期25-32,共8页
为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))... 为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))8个指标,建立岩爆预测指标体系;其次,针对岩爆样本存在的数据不均衡问题,引进托梅克联系(Tomek Link)对欠采样方法,改进合成少数类过采样(Smote)算法,对岩爆训练样本进行混合过采样;最后,构建SmoteTomek-梯度提升树(GBDT)岩爆预测模型,以38组数据验证模型的有效性,并与其他模型进行对比。结果表明:SmoteTomek-GBDT的准确率为92.1%,较未采样提升5.3%,Smote采样提升10.5%,优于随机过采样模型,并且避免跨等级的岩爆误判。 展开更多
关键词 岩爆预测 梯度提升(GBDT)算法 合成少数类过采样(Smote)算法 岩爆指标 托梅克联系(Tomek Link)
在线阅读 下载PDF
考虑影响因子重要性选择和土壤含水率的滑坡易发性评价
20
作者 王中羽 李素敏 +1 位作者 袁利伟 乐伟鹏 《水文地质工程地质》 北大核心 2025年第3期211-221,共11页
在滑坡易发性评价体系中,尚未形成统一的和科学的筛选影响滑坡发育因子的标准,导致滑坡易发性评价结果的不一致性。为提高滑坡易发性评估体系的准确性,提出一种基于机器学习的考虑因子重要性选择与土壤含水率的滑坡易发性评价体系。以... 在滑坡易发性评价体系中,尚未形成统一的和科学的筛选影响滑坡发育因子的标准,导致滑坡易发性评价结果的不一致性。为提高滑坡易发性评估体系的准确性,提出一种基于机器学习的考虑因子重要性选择与土壤含水率的滑坡易发性评价体系。以云南省富民县为例,结合遥感数据、辅助数据和现场调查数据,编制滑坡历史记录;利用SAR卫星后向散射系数和从DEM中提取的地表粗糙度提取土壤含水率,通过XGBoost回归和Lasso回归模型对15个评价因子进行重要性排序,并对滑坡影响因子进行多重共线性评估,筛选出最具鉴别性的滑坡影响因子;用轻量级梯度提升机算法和随机森林模型分别在因子重要性选择前与选择后对富民县进行滑坡易发性评价。结果表明,土壤含水率因子对滑坡发育有较大影响;经过因子重要性选择后的滑坡易发性评价结果准确性更高;轻量级梯度提升机算法模型在评估中表现出优越的评估性能(AUC=0.91),表明LightGBM模型可以较好地应用在滑坡易发性评价中。本研究着重讨论了因子重要性选择对滑坡易发性评价体系的影响,并有效地将面状土壤含水率因子纳入滑坡影响因子中,提高了易发性评价结果的精确性和可靠性,为预防滑坡灾害提供新思路。 展开更多
关键词 机器学习 轻量级梯度提升算法 土壤含水率 滑坡易发性 地质灾害
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部