为了提高基于分类的DDo S攻击检测方法的实时性,通过结合轻量级入侵检测提出了以遗传算法为搜索策略、信息增益为子集评估标准的filter型特征选择算法(feature selection based on genetic algorithm and information gain,GAIG),提取...为了提高基于分类的DDo S攻击检测方法的实时性,通过结合轻量级入侵检测提出了以遗传算法为搜索策略、信息增益为子集评估标准的filter型特征选择算法(feature selection based on genetic algorithm and information gain,GAIG),提取具有高区分度的相对最小特征子集。在此基础上对比了Nave Bayes、C4.5、SVM、RBF network、Random forest和Random tree这六种常用分类器的性能,并选取Random tree构建了一种轻量化的DDo S攻击检测系统。实验结果表明,GAIG算法使分类器在尽可能不降低分类精度的同时,提高分类速度,从而提高分类检测的实时性。该轻量化攻击检测系统比一般的分类模型具有更好的检测未知攻击的能力。展开更多
针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能...针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能轻量级物联网入侵检测算法。该算法进行预处理以将入侵数据集的复杂流量转换为SVM的可读格式,采用交叉和变异算子智能选择信息量最大的流量特征以降低无线网络流量的维数,使用ESVM算法执行分类以更有效地识别入侵攻击检测。实现结果表明,该算法在选择最优流量和提高检测精度方面均有明显改善。展开更多
文摘为了提高基于分类的DDo S攻击检测方法的实时性,通过结合轻量级入侵检测提出了以遗传算法为搜索策略、信息增益为子集评估标准的filter型特征选择算法(feature selection based on genetic algorithm and information gain,GAIG),提取具有高区分度的相对最小特征子集。在此基础上对比了Nave Bayes、C4.5、SVM、RBF network、Random forest和Random tree这六种常用分类器的性能,并选取Random tree构建了一种轻量化的DDo S攻击检测系统。实验结果表明,GAIG算法使分类器在尽可能不降低分类精度的同时,提高分类速度,从而提高分类检测的实时性。该轻量化攻击检测系统比一般的分类模型具有更好的检测未知攻击的能力。
文摘针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能轻量级物联网入侵检测算法。该算法进行预处理以将入侵数据集的复杂流量转换为SVM的可读格式,采用交叉和变异算子智能选择信息量最大的流量特征以降低无线网络流量的维数,使用ESVM算法执行分类以更有效地识别入侵攻击检测。实现结果表明,该算法在选择最优流量和提高检测精度方面均有明显改善。