期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法 被引量:1
1
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
在线阅读 下载PDF
基于LAM-Net的轨道侵入界异物自主检测系统 被引量:5
2
作者 叶涛 赵宗扬 郑志康 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第9期206-218,共13页
针对轨道入侵异物对行车安全造成的极大威胁,而现有的轨道目标检测算法难以平衡检测精度和速度、易受复杂环境影响以及难以部署于嵌入式设备等问题,提出了一种轻量型自适应多尺度卷积神经网络,其通过特征图线性变换简化特征提取过程,使... 针对轨道入侵异物对行车安全造成的极大威胁,而现有的轨道目标检测算法难以平衡检测精度和速度、易受复杂环境影响以及难以部署于嵌入式设备等问题,提出了一种轻量型自适应多尺度卷积神经网络,其通过特征图线性变换简化特征提取过程,使用自适应多尺度特征融合优化特征表达能力,并通过设计轻量型注意力进一步提升异物检测精度;同时,结合NVIDIA Jetson TX2嵌入式平台,研制了轨道入侵异物自主检测系统。实验结果表明,本文提出的模型很好地平衡了检测速度和精度,在NVIDIA GeForce GTX1080Ti的GPU平台上对轨道数据集的检测速度为297 FPS,检测精度为92.96%,比YOLOv4-tiny高7.72%,实现了在轨道交通复杂场景下高精度、高速度以及高鲁棒性的检测入侵异物。 展开更多
关键词 目标检测算法 轻量型卷积神经网络 深度学习 轨道入侵异物 自适应特征融合 检测系统
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部