期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
KCPNet:张量分解的轻量卷积模块设计、部署与应用
被引量:
3
1
作者
王鼎衡
赵广社
+1 位作者
姚满
李国齐
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2022年第3期135-146,共12页
为解决现有卷积模块在实际应用中内存消耗高、计算效率低的问题,在Kronecker CANDECOMP/PARAFAC(KCP)张量分解的基础上,提出一种轻量、高效、瓶颈结构的卷积模块(KCPNet)。对普通卷积作2阶KCP分解,生成的因子张量分别映射为两层负责输...
为解决现有卷积模块在实际应用中内存消耗高、计算效率低的问题,在Kronecker CANDECOMP/PARAFAC(KCP)张量分解的基础上,提出一种轻量、高效、瓶颈结构的卷积模块(KCPNet)。对普通卷积作2阶KCP分解,生成的因子张量分别映射为两层负责输入输出通道变化的1×1卷积和两层负责特征提取的变通道可分离卷积,再将这4层卷积组成含有瓶颈结构的KCPNet卷积模块。基于OpenCL并行编程框架将KCPNet部署于嵌入式GPU,并围绕pico-flexx深度相机开发了动态手势识别应用。实验结果表明:在ImageNet大规模标准数据集上,相比ResNet、ResNeXt等已有的张量分解卷积模块,KCPNet在准确率相近的情况下能够兼顾空间和计算复杂度的效率;在中等规模标准数据集CIFAR-10上,KCPNet能够在无明显精度损失的前提下将传统的VGG模型压缩至原先的16.1%并节约75.5%的计算量;在面向嵌入式GPU时,并行部署的KCPNet可使CIFAR-10的识别速度达到100帧/s。以KCPNet为核心开发的手势识别应用程序可达到99.5%的准确率和100帧/s以上的运行速度,内存开销为22 MB。
展开更多
关键词
张
量
分解
Kronecker
CANDECOMP/PARAFAC张
量
分解
轻量卷积模块
并行部署
手势识别
在线阅读
下载PDF
职称材料
基于轻量级全连接张量映射网络的高光谱图像分类方法
2
作者
林知心
郑玉棒
+2 位作者
马天宇
王蕊
李恒超
《电子学报》
EI
CAS
CSCD
北大核心
2024年第10期3541-3551,共11页
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全...
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全连接张量映射网络的高光谱图像分类方法.根据全连接张量网络分解的映射思想以及高光谱图像“图谱合一”的结构特点,本文设计两种张量映射卷积单元,通过使用多个具有全连接结构的小尺寸卷积核代替原始卷积核,降低了卷积层的时间和空间复杂度.此外,基于新单元构建残差双分支张量模块.双分支结构共享同一组权重参数,并采用通道分割操作减少特征通道数,提升特征提取过程的实时性.本文所提模型通过使用新单元和新模块充分挖掘高光谱图像的局部空谱信息和全局光谱信息,有效提高了分类性能并减少硬件资源消耗.在三个常用高光谱图像数据集上的实验结果表明,所提模型相较于其他现有工作具有更高的分类性能以及更低的参数量和计算量.
展开更多
关键词
高光谱图像分类
模型压缩
全连接张
量
网络分解
卷积
神经网络
张
量
神经网络
轻量卷积模块
在线阅读
下载PDF
职称材料
题名
KCPNet:张量分解的轻量卷积模块设计、部署与应用
被引量:
3
1
作者
王鼎衡
赵广社
姚满
李国齐
机构
西安交通大学自动化科学与工程学院
清华大学精密仪器系
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2022年第3期135-146,共12页
基金
国家自然科学基金资助项目(61876215)。
文摘
为解决现有卷积模块在实际应用中内存消耗高、计算效率低的问题,在Kronecker CANDECOMP/PARAFAC(KCP)张量分解的基础上,提出一种轻量、高效、瓶颈结构的卷积模块(KCPNet)。对普通卷积作2阶KCP分解,生成的因子张量分别映射为两层负责输入输出通道变化的1×1卷积和两层负责特征提取的变通道可分离卷积,再将这4层卷积组成含有瓶颈结构的KCPNet卷积模块。基于OpenCL并行编程框架将KCPNet部署于嵌入式GPU,并围绕pico-flexx深度相机开发了动态手势识别应用。实验结果表明:在ImageNet大规模标准数据集上,相比ResNet、ResNeXt等已有的张量分解卷积模块,KCPNet在准确率相近的情况下能够兼顾空间和计算复杂度的效率;在中等规模标准数据集CIFAR-10上,KCPNet能够在无明显精度损失的前提下将传统的VGG模型压缩至原先的16.1%并节约75.5%的计算量;在面向嵌入式GPU时,并行部署的KCPNet可使CIFAR-10的识别速度达到100帧/s。以KCPNet为核心开发的手势识别应用程序可达到99.5%的准确率和100帧/s以上的运行速度,内存开销为22 MB。
关键词
张
量
分解
Kronecker
CANDECOMP/PARAFAC张
量
分解
轻量卷积模块
并行部署
手势识别
Keywords
tensor decomposition
Kronecker CANDECOMP/PARAFAC tensor decomposition
lightweight convolutional module
parallel deployment
gesture recognition
分类号
TP274.5 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
基于轻量级全连接张量映射网络的高光谱图像分类方法
2
作者
林知心
郑玉棒
马天宇
王蕊
李恒超
机构
西南交通大学信息科学与技术学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2024年第10期3541-3551,共11页
基金
国家自然科学基金(No.62271418)。
文摘
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全连接张量映射网络的高光谱图像分类方法.根据全连接张量网络分解的映射思想以及高光谱图像“图谱合一”的结构特点,本文设计两种张量映射卷积单元,通过使用多个具有全连接结构的小尺寸卷积核代替原始卷积核,降低了卷积层的时间和空间复杂度.此外,基于新单元构建残差双分支张量模块.双分支结构共享同一组权重参数,并采用通道分割操作减少特征通道数,提升特征提取过程的实时性.本文所提模型通过使用新单元和新模块充分挖掘高光谱图像的局部空谱信息和全局光谱信息,有效提高了分类性能并减少硬件资源消耗.在三个常用高光谱图像数据集上的实验结果表明,所提模型相较于其他现有工作具有更高的分类性能以及更低的参数量和计算量.
关键词
高光谱图像分类
模型压缩
全连接张
量
网络分解
卷积
神经网络
张
量
神经网络
轻量卷积模块
Keywords
hyperspectral image classification
model compression
fully-connected tensor network decomposition
convolutional neural network
tensorial neural network
lightweight convolutional module
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
KCPNet:张量分解的轻量卷积模块设计、部署与应用
王鼎衡
赵广社
姚满
李国齐
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2022
3
在线阅读
下载PDF
职称材料
2
基于轻量级全连接张量映射网络的高光谱图像分类方法
林知心
郑玉棒
马天宇
王蕊
李恒超
《电子学报》
EI
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部