期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
轻量化YOLOv7-tiny的遥感图像小目标检测 被引量:4
1
作者 桑雨 李立权 李铁 《科学技术与工程》 北大核心 2024年第18期7726-7732,共7页
针对遥感图像小目标众多、目标检测器参数量大和检测效率低等问题,提出了一种改进的YOLOv7-tiny的轻量级遥感图像小目标检测模型。首先,针对原始模型中跨阶段局部空间金字塔池化网络复杂的碎片化操作,提出轻量级的空间金字塔池化结构来... 针对遥感图像小目标众多、目标检测器参数量大和检测效率低等问题,提出了一种改进的YOLOv7-tiny的轻量级遥感图像小目标检测模型。首先,针对原始模型中跨阶段局部空间金字塔池化网络复杂的碎片化操作,提出轻量级的空间金字塔池化结构来减少多余的卷积算子操作;其次,针对颈部网络冗余的模块化连接方式和小目标容易在深层特征丢失空间信息的问题,提出深层语义信息引导的单尺度预测头方法来进行小目标位置信息强化,并进一步减少颈部网络和头部网络的计算成本。在遥感图像数据集上展开实验,结果表明,改进后的模型比原始模型参数量降低49.6%,计算复杂度降低28.5%,推理速度提高73.1%,并优于现阶段其他主流轻量级目标检测器。 展开更多
关键词 目标检测 yolov7-tiny 量化 遥感图像 语义信息引导
在线阅读 下载PDF
基于改进YOLOv7-tiny的轻量化道路目标检测算法 被引量:1
2
作者 何泽江 蒋淑霞 柳霞 《汽车技术》 北大核心 2025年第2期9-16,共8页
针对目标检测算法对算力和存储空间的高要求限制其在边缘设备中检测功能实时性的问题,提出了一种基于YOLOv7-tiny改进的轻量化道路目标检测算法。首先,通过K-means++聚类算法生成适合道路目标检测的先验锚框;其次,改进ELAN结构轻量化主... 针对目标检测算法对算力和存储空间的高要求限制其在边缘设备中检测功能实时性的问题,提出了一种基于YOLOv7-tiny改进的轻量化道路目标检测算法。首先,通过K-means++聚类算法生成适合道路目标检测的先验锚框;其次,改进ELAN结构轻量化主干网络,同时提出轻量型多尺度特征(LMS)模块优化颈部网络;最后,使用西格玛线性单元(SiLU)激活函数加速模型收敛,采用MPDIoU损失函数进一步提高检测精度。试验结果表明:改进后的模型参数量减少18.3%,计算量降低15.0%,且所有类别平均检测精度上升1.1%。在Jetson TX2中,使用TensorRT加速后的检测速度达到48帧/s,基本满足道路目标检测的实时性要求。 展开更多
关键词 自动驾驶 yolov7-tiny 道路目标检测 量化 Jetson TX2
在线阅读 下载PDF
改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测 被引量:9
3
作者 梁礼明 龙鹏威 +1 位作者 冯耀 卢宝贺 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1227-1240,共14页
针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重... 针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重坐标注意力机制,提升模型对空间和通道信息的特征提取能力;三是引入鬼影混洗卷积,在提高精度的同时降低模型参数量和计算量;四是增加大目标检测层,改善特征图中部分缺陷占比较大,导致检测精度低的问题。在NEU-DET和Severstal钢材缺陷数据集进行实验验证,改进后算法与原模型相比,mAP分别提升5.7%和8.5%;参数量和计算量分别降低0.61 M和4.2 G;精确度和召回率分别提升7.1%,1.8%和8.9%,7.0%。实验结果表明,改进后的算法更好地平衡了检测精度和轻量化,为边缘终端设备提供了参考。 展开更多
关键词 缺陷检测 轻量化yolov7-tiny VoVGA-FPN网络 三重坐标注意力 鬼影混洗卷积
在线阅读 下载PDF
改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测 被引量:3
4
作者 穆春阳 李闯 +3 位作者 马行 刘永鹿 杨科 刘宝成 《组合机床与自动化加工技术》 北大核心 2024年第7期156-160,共5页
针对目前焊缝缺陷数据集少,检测环境恶劣,人为识别困难等问题,提出了一种改进的YOLOv7-tiny算法。由于检测物体缺陷形状不规则,采用可变形卷积能够学习到更加丰富的特征信息和感知到物体的细节信息,增强了模型的表达能力和泛化能力;为... 针对目前焊缝缺陷数据集少,检测环境恶劣,人为识别困难等问题,提出了一种改进的YOLOv7-tiny算法。由于检测物体缺陷形状不规则,采用可变形卷积能够学习到更加丰富的特征信息和感知到物体的细节信息,增强了模型的表达能力和泛化能力;为了在提高焊缝缺陷检测速度的同时,不降低准确率,满足工厂实时性的要求,提出了一种融合轻量化卷积和注意力机制的ELAN-PCS网络结构;为了解决中小目标检测困难,很容易出现漏检的情况,引入了通道注意力机制。实验结果表明,与原YOLOv7-tiny相比,改进模型在大型铸件焊缝缺陷数据集上mAP(0.5)提升1.8%、mAP(0.5~0.95)提升6.8%,模型参数量下降1.9 M。 展开更多
关键词 量化 缺陷检测 yolov7-tiny 注意力机制 可变形卷积
在线阅读 下载PDF
YOLOv7-VSS轻量化橘瓣外观检测模型
5
作者 喻擎苍 邱锐 +2 位作者 傅林杰 谢淼 孙树森 《现代电子技术》 北大核心 2025年第10期85-91,共7页
针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同... 针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。 展开更多
关键词 橘瓣外观检测 yolov7 量化 EfficientViT GSConv Hard-Swish MPDIoU
在线阅读 下载PDF
基于YOLOv7的轻量化农田害虫检测算法
6
作者 张鹏程 矫桂娥 毕卓 《湖南农业大学学报(自然科学版)》 北大核心 2025年第2期103-112,共10页
针对现有的害虫检测算法存在计算量和参数量大、检测精度较低等问题,本文提出了一种基于YOLOv7的轻量化农田害虫检测算法。首先,将轻量级GhostNetV2和PConv模块分别引入主干网络和颈部网络,在降低网络的参数量和计算量的同时减少通道的... 针对现有的害虫检测算法存在计算量和参数量大、检测精度较低等问题,本文提出了一种基于YOLOv7的轻量化农田害虫检测算法。首先,将轻量级GhostNetV2和PConv模块分别引入主干网络和颈部网络,在降低网络的参数量和计算量的同时减少通道的特征冗余;其次,引入可变形大核注意力机制(D-LKA),增强模型对不规则形状的目标信息的捕捉能力;然后,在颈部网络运用尺度内特征交互模块AIFI提升尺度内和尺度间的特征交互能力;最后,针对特征融合导致的特征信息丢失的问题,引入CARAFE上采样算子,以提高模型的感知野,增加特征信息流通,减少特征损失。结果表明:改进后的算法对农田害虫的检测精度达到了72.1%;相较于YOLOv7,其参数量下降43.4%,计算量下降37.0%。本文提出的检测算法在实现模型轻量化的同时,提高了检测结果的准确率,可为农业智能机器的研究提供参考。 展开更多
关键词 害虫检测 yolov7 量化 注意力机制 特征融合
在线阅读 下载PDF
改进YOLOv7的轻量化钢材表面缺陷检测算法
7
作者 耿涛 刘宇峰 金海波 《计算机工程与设计》 北大核心 2025年第7期1998-2003,共6页
针对目前钢材表面缺陷检测算法存在参数量大、计算冗余的问题,提出一种改进YOLOv7的轻量化钢材表面缺陷检测算法。引入EfficientViT替换原骨干特征提取网络;将EMA与SPPCSPC进行融合,使用PC卷积代替部分普通卷积;用MPDIoU替换CIoU进行损... 针对目前钢材表面缺陷检测算法存在参数量大、计算冗余的问题,提出一种改进YOLOv7的轻量化钢材表面缺陷检测算法。引入EfficientViT替换原骨干特征提取网络;将EMA与SPPCSPC进行融合,使用PC卷积代替部分普通卷积;用MPDIoU替换CIoU进行损失函数优化。实验结果表明,改进的YOLOv7算法mAP值比YOLOv7算法提升4.51%,参数量和计算量分别降低43.82%和72.58%,能够更好部署在资源有限的工业场景中。 展开更多
关键词 目标检测 yolov7 量化 EfficientViT 钢材表面 EMA MPDIoU
在线阅读 下载PDF
基于改进YOLOv7-Tiny的轻量化百香果检测方法 被引量:3
8
作者 涂智荣 凌海英 +3 位作者 李帼 陆声链 钱婷婷 陈明 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期79-90,共12页
在果园中,准确且快速的果实检测是水果产量预测和自动化采摘等农业智能化应用的关键任务之一。针对目前目标检测模型参数量和计算量大,难以满足嵌入式设备实时性要求的问题,本文提出一种基于改进YOLOv7-Tiny的轻量化检测方法,用于复杂... 在果园中,准确且快速的果实检测是水果产量预测和自动化采摘等农业智能化应用的关键任务之一。针对目前目标检测模型参数量和计算量大,难以满足嵌入式设备实时性要求的问题,本文提出一种基于改进YOLOv7-Tiny的轻量化检测方法,用于复杂果园环境中百香果的检测。首先,在主干网络中使用全维动态卷积(ODConv),提高主干网络的特征提取能力,使平均精度均值(mAP)提升2个百分点;其次,为了减少颈部网络的参数量和计算量,融合GhostNet网络和MobileOne网络,提出GMConv轻量化模块,使模型参数量下降约30%,计算量下降约20%,FPS提高约50 frame/s。在百香果数据集上的实验结果表明,与YOLOv7-Tiny相比,改进后算法的参数量和计算量分别下降32.1%和25.4%,mAP提升2.6个百分点。在降低计算量和参数量的前提下,改进后算法进一步提高了检测精度,有利于在嵌入式设备中部署。 展开更多
关键词 目标检测 yolov7-tiny 百香果 量化网络 GMConv模块 ODConv
在线阅读 下载PDF
基于改进YOLOv7-Tiny的变电设备红外图像识别 被引量:1
9
作者 邓长征 刘明泽 +2 位作者 付添 弓萌庆 骆冰洁 《红外技术》 北大核心 2025年第1期44-51,共8页
针对复杂背景下变电设备红外图像目标识别精度不高、识别速度慢的问题,本文提出一种基于改进YOLOv7-Tiny的变电设备红外图像识别算法。首先,引入轻量级瓶颈结构GhostNetV2 BottleNeck替换部分CBS模块构建轻量级高效聚合网络L-ELAN(Light... 针对复杂背景下变电设备红外图像目标识别精度不高、识别速度慢的问题,本文提出一种基于改进YOLOv7-Tiny的变电设备红外图像识别算法。首先,引入轻量级瓶颈结构GhostNetV2 BottleNeck替换部分CBS模块构建轻量级高效聚合网络L-ELAN(Lightweight-Efficient Layer Aggregation Network),同时在特征提取阶段嵌入CA(Coordinate Attention)注意力机制,在降低网络参数量的同时加强网络对目标关键特征的提取,提升检测精度;将网络坐标损失函数替换为SIoU Loss,以提升锚框定位精度和网络收敛速度;在变电设备红外数据集上进行测试,结果表明,改进后网络的精确率达到96.28%,检测速率达到26.42 frame/s,模型大小降低至7.82 M。与YOLOv7-Tiny原算法相比较,本文算法在提升识别精度的同时将检测速率提升21.69%,模型大小减少36.89%,可以满足变电站设备的精准实时识别要求,为后续的变电站设备故障诊断奠定基础。 展开更多
关键词 变电设备 红外图像识别 yolov7-tiny 注意力机制 量化
在线阅读 下载PDF
改进轻量化 YOLOv7-tiny 道路限高障碍物检测方法 被引量:2
10
作者 张青春 王文聘 +2 位作者 张洪源 张恩溥 宁建峰 《中国测试》 CAS 北大核心 2024年第5期186-192,共7页
针对道路限高障碍物检测困难、模型复杂以及难以在嵌入式端部署等问题,提出一种基于改进轻量化YOLOv7-tiny模型的道路限高障碍物检测方法。改进模型采用更加轻量的FasterNet网络替换原有主干网络,在Neck层使用PConv卷积替代部分Conv卷积... 针对道路限高障碍物检测困难、模型复杂以及难以在嵌入式端部署等问题,提出一种基于改进轻量化YOLOv7-tiny模型的道路限高障碍物检测方法。改进模型采用更加轻量的FasterNet网络替换原有主干网络,在Neck层使用PConv卷积替代部分Conv卷积,以减少计算冗余和内存访问,从而有效降低模型的参数量和计算量。同时,引入CA注意力机制提高检测精度,并使用Focal-EIoU损失函数优化模型的收敛速度和效率。实验结果表明:相较于YOLOv7-tiny目标检测模型,改进模型在检测数据集上,mAP@0.5提高6.6%,参数量和计算量分别降低24%和20.5%,模型权重文件减少27.2%,能够在保持较高检测精度的同时,满足轻量化的需求。 展开更多
关键词 障碍物检测 量化 yolov7-tiny FasterNet PConv卷积 CA注意力机制
在线阅读 下载PDF
基于YOLOv7-tiny的轻量化海珍品检测算法
11
作者 陈俊逸 曹立杰 +2 位作者 吴军 罗佳璐 何植仟 《计算机应用》 CSCD 北大核心 2024年第S01期319-323,共5页
针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-... 针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。 展开更多
关键词 海珍品 目标检测 yolov7-tiny 量化 k-means++
在线阅读 下载PDF
基于改进YOLOv7-tiny的PCB缺陷检测算法
12
作者 侯培国 韩超明 +1 位作者 李宁 宋涛 《燕山大学学报》 北大核心 2025年第2期167-176,共10页
针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池... 针对现有PCB缺陷检测算法检测效率低、参数量大以及结构复杂的问题,提出了一种改进的YOLOv7-tiny算法。设计了多尺度捕获模块,通过多尺度特征捕获、上下文信息融合以及特征增强的方法,提高算法对图像特征提取的能力,改善CSPSPP层单一池化操作掩盖特征图内部有效信息的问题。提出了全局局部门控感知模块,通过选择性特征融合、局部与全局信息结合的方法,降低颈部网络的参数量。基于DeepPCB数据集进行实验得出,改进后的模型较传统模型精度提升了1.5%,参数量和计算量分别下降了66%和20.6%,模型规模降低了66.3%。改进后的算法识别精度高、参数量少、计算量小,可以为PCB缺陷的快速准确识别提供良好的条件。 展开更多
关键词 PCB表面缺陷检测 yolov7-tiny 多尺度捕获模块 全局局部门控感知模块 量化
在线阅读 下载PDF
IDD-YOLOv7:一种用于输电线路绝缘子多缺陷的轻量化检测方法 被引量:14
13
作者 翟永杰 赵晓瑜 +3 位作者 王璐瑶 王亚茹 宋晓轲 朱浩硕 《图学学报》 CSCD 北大核心 2024年第1期90-101,共12页
YOLO目标检测算法是当前基于图像的输电线路绝缘子缺陷检测的主流方法,然而现有模型复杂度较大,亟需合理有效的参数压缩方法作为前提条件,来为解决无人机边缘设备部署的困境问题奠定基础;同时,无人机航拍的绝缘子缺陷图像背景复杂、缺... YOLO目标检测算法是当前基于图像的输电线路绝缘子缺陷检测的主流方法,然而现有模型复杂度较大,亟需合理有效的参数压缩方法作为前提条件,来为解决无人机边缘设备部署的困境问题奠定基础;同时,无人机航拍的绝缘子缺陷图像背景复杂、缺陷尺寸较小,容易出现误检、漏检等问题。为此,提出了一种用于输电线路绝缘子多缺陷检测的Insulator Defect Detection-YOLOv7(IDD-YOLOv7)模型,以降低模型复杂度,提高模型鲁棒性。首先,在多尺度特征融合的过程中加入坐标注意力(Coordinate Attention)机制,抑制复杂背景的干扰,提升模型对小目标的全局感知能力;之后,设计C3GhostNetV2模块,用于捕获不同空间像素之间的远程依赖性,在增强模型表达能力的同时降低模型的参数量和浮点运算量;最后,提出Focal-CIoU损失函数,提高模型高质量anchor的贡献,加快模型的收敛速度。实验结果表明,本文方法与基线模型相比mAP^(50)提升了3.8%,查准率和召回率分别提升了1.7%和7.6%,参数量和浮点运算量分别下降了18.3%和14.0%,绝缘子自爆、破损、闪络缺陷的AP^(50)分别提升了0.8%、4.5%、6.3%。 展开更多
关键词 yolov7 绝缘子缺陷检测 注意力机制 模型复杂度 量化 损失函数
在线阅读 下载PDF
遥感军事坦克轻量化检测的MSG-YOLOv7算法 被引量:1
14
作者 谢国波 吴陈锋 林志毅 《现代电子技术》 北大核心 2024年第19期47-54,共8页
针对遥感图像下军事坦克检测模型体积大、计算量大等问题,提出一种轻量化的遥感军事坦克目标检测算法MSG-YOLOv7。首先,MSG-YOLOv7采用MobileNetv3作为主干网络,利用倒残差结构和自适应缩放的方法对特征进行提取,以减小模型的体积大小... 针对遥感图像下军事坦克检测模型体积大、计算量大等问题,提出一种轻量化的遥感军事坦克目标检测算法MSG-YOLOv7。首先,MSG-YOLOv7采用MobileNetv3作为主干网络,利用倒残差结构和自适应缩放的方法对特征进行提取,以减小模型的体积大小与运算量;其次,设计SD-MP结构来提高细节特征表达能力,解决因下采样操作导致的小目标特征丢失问题;最后,基于GCNet和深度可分离卷积设计出GD-ELAN模块,通过全局上下文建模来增强模型对长距离关系的感知,在轻量化的同时更有效地捕捉全局信息,提高模型的性能。实验结果表明,MSG-YOLOv7在公开的Google Earth遥感军事坦克数据集上的平均检测精度(AP)达到了99.02%,体积较原模型下降了60%,计算量为18.59 GFlops,FPS达到41,证明该模型适用于要求高性能、高速度和较小模型体积的遥感军事坦克检测场景中。 展开更多
关键词 遥感图像 军事坦克检测 yolov7 量化网络 SD-MP GD-ELAN
在线阅读 下载PDF
改进YOLOv7-Tiny的道路裂缝检测算法 被引量:1
15
作者 王启涵 刘超 《计算机工程与应用》 北大核心 2025年第10期372-380,共9页
道路裂缝检测是道路工程中的重要环节。针对现阶段道路裂缝检测算法中准确度低、效率低的问题,提出了一种基于YOLOv7-Tiny的轻量型道路裂缝检测算法YOLOv7-TPSF。引入部分卷积PConv,对原网络中耗参量较多的3×3卷积层进行部分替换,... 道路裂缝检测是道路工程中的重要环节。针对现阶段道路裂缝检测算法中准确度低、效率低的问题,提出了一种基于YOLOv7-Tiny的轻量型道路裂缝检测算法YOLOv7-TPSF。引入部分卷积PConv,对原网络中耗参量较多的3×3卷积层进行部分替换,降低模型的参数量,提升模型的训练速度;结合特征融合网络BiFusion Neck与加权特征金字塔BiFPN的优点,提出了新的特征融合模块Bi-FusFPN,减少网络计算量,强化多尺度特征的融合能力;在输出端添加无参注意力机制SimAM,进一步提高大、中、小三类目标的检测能力。实验结果表明,YOLOv7-TPSF算法相较于YOLOv7-Tiny算法,网络参数量与计算量分别减少了31.7%、34.6%,准确度与检测速度分别提高了3.7%、9.7%,一定程度上满足了道路裂缝检测准确性与实时性的需求。 展开更多
关键词 道路裂缝检测 yolov7-tiny 量型 注意力机制 特征融合模块Bi-FusFPN
在线阅读 下载PDF
基于通道剪枝的改进YOLOv7-tiny舰船识别算法 被引量:1
16
作者 张上 熊中越 王恒涛 《电光与控制》 北大核心 2025年第4期31-36,共6页
海上舰船目标识别是海洋监测的重要一环,也是世界各海岸地带国家国土安全的重要解决方案之一。针对SAR图像舰船目标检测存在识别精度低、训练模型大等问题,提出了一种基于通道剪枝的改进YOLOv7-tiny海上舰船识别算法。首先,采用MobileNe... 海上舰船目标识别是海洋监测的重要一环,也是世界各海岸地带国家国土安全的重要解决方案之一。针对SAR图像舰船目标检测存在识别精度低、训练模型大等问题,提出了一种基于通道剪枝的改进YOLOv7-tiny海上舰船识别算法。首先,采用MobileNetV3替代原有主干网络,以降低模型的计算量和体积,实现模型轻量化;其次,引入MPDIoU简化计算过程,优化模型的收敛性;最后,通过通道剪枝提高模型精度,同时平衡模型体积和计算量的降低幅度,进一步优化算法模型。实验结果表明,改进算法相对于YOLOv7-tiny,召回率提升了5.85个百分点,mAP提升了3.69个百分点,参数量减少了63.35%,计算量减少了70%。 展开更多
关键词 目标检测 yolov7-tiny SAR图像 量化模型 通道剪枝 损失函数
在线阅读 下载PDF
LW-YOLOv7SAR:轻量SAR图像目标检测方法 被引量:1
17
作者 邹珺淏 任酉贵 +3 位作者 冷芳玲 鲍玉斌 张天成 于戈 《小型微型计算机系统》 北大核心 2025年第1期143-150,共8页
针对SAR场景的小目标、多噪声、复杂等特征,以及舰船目标场景的优化轻量检测模型需求,基于YOLOv7-tiny框架裁剪与优化,提出了可用于SAR舰船图像的轻量检测网络LW-YOLOv7SAR.它通过重参数化和Shuffle技巧,并结合GhostConv模块去除冗余信... 针对SAR场景的小目标、多噪声、复杂等特征,以及舰船目标场景的优化轻量检测模型需求,基于YOLOv7-tiny框架裁剪与优化,提出了可用于SAR舰船图像的轻量检测网络LW-YOLOv7SAR.它通过重参数化和Shuffle技巧,并结合GhostConv模块去除冗余信息的思想和方法,轻量化了模型,同时增强了模型多尺度信息提取的效率;为了便于部署和移植,模型使用易部署的激活函数hard-Swish和ReLU6.此外,在主干层引入结合空间通道注意力的软阈值化模块,增加了模型的去噪和泛化能力;为了提高小目标的检测精度,在模型中引入了加权的多尺度特征融合.经过理论分析和实验验证发现,对比YOLOv7-tiny, LW-YOLOv7SAR模型减少89%计算量、90%参数量、90%权重文件大小,由于减小了运算量,实现了模型推理时的功耗降低,因此也更符合绿色计算要求;在SSDD数据集上的检测准确率可达97.6%. 展开更多
关键词 yolov7-tiny 合成孔径雷达 舰船检测 小目标检测 软阈值化 量化
在线阅读 下载PDF
基于Yolov7_Pose的轻量化人体姿态估计网络
18
作者 黄健 胡翻 展越 《现代电子技术》 北大核心 2024年第23期98-104,共7页
人体姿态估计在计算机视觉、人机交互与运动分析等领域广泛应用。当前人体姿态估计算法往往通过构建复杂的网络来提高精度,但这带来了模型体量和计算量增大,以及检测速度变慢等问题。因此,文中提出一种基于Yolov7_Pose的轻量化人体姿态... 人体姿态估计在计算机视觉、人机交互与运动分析等领域广泛应用。当前人体姿态估计算法往往通过构建复杂的网络来提高精度,但这带来了模型体量和计算量增大,以及检测速度变慢等问题。因此,文中提出一种基于Yolov7_Pose的轻量化人体姿态估计网络。首先,采用轻量化CARAFE模块替换原网络中的上采样模块,完成上采样工作;接着,在特征融合部分引入轻量化Slim-neck模块,以降低模型的计算量和复杂度;最后,提出了RFB-NAM模块,将其添加到主干网络中,用以获取多个不同尺度的特征信息,扩大感受野,提高特征提取能力。实验结果表明,改进后网络模型的GFLOPs和模型大小分别降低了约18.1%、22%,检测速度提升37.93%,并在低光环境、小目标、密集人群和俯视角度下表现出了较好的性能。 展开更多
关键词 人体姿态估计 yolov7_Pose 量化 上采样 CARAFE Slim-neck
在线阅读 下载PDF
ZZX-YOLO:改进YOLOv7-tiny的钢材缺陷检测算法
19
作者 周赵轩 曹岩 《计算机工程与应用》 北大核心 2025年第16期315-323,共9页
针对钢材表面缺陷尺寸变化大,采集图像特征不明显,导致传统缺陷检测方法在实际应用中容易出现漏检、检测效率低和不易部署在移动端设备中等问题,提出了一种面向工业环境的轻量化钢材表面缺陷检测方法ZZX-YOLO。针对普通卷积计算量大的问... 针对钢材表面缺陷尺寸变化大,采集图像特征不明显,导致传统缺陷检测方法在实际应用中容易出现漏检、检测效率低和不易部署在移动端设备中等问题,提出了一种面向工业环境的轻量化钢材表面缺陷检测方法ZZX-YOLO。针对普通卷积计算量大的问题,提出一种新的轻量级卷积技术ZZXConv,增强了特征图的纹理特征,抑制了冗余信息,促进了检测精度和速度的提升;基于ZZXConv设计了一种全新的ZZX残差模块,实现了更丰富的特征聚合,增强了特征提取能力,并且设计了ZZX_CSPC模块取代YOLOv7-tiny颈部结构中的ELAN-tiny,提高特征的表达能力和弱化无关的特征信息,以实现更高的计算成本效益。使用K-means++算法重新聚类生成先验框,提高了检测精度和检测速度。实验结果表明,改进的算法在数据集上的平均精度达到了63.13%,相比于原算法,精确度提高了7.70个百分点,参数量下降了8.53%,证明了ZZX-YOLO的有效性。 展开更多
关键词 量化钢材表面缺陷检测 yolov7-tiny ZZXConv ZZX_CSPC模块 ZZX-YOLO
在线阅读 下载PDF
采用改进YOLOv3-Tiny模型的轻量化莲蓬质量分级算法 被引量:1
20
作者 张雷 严昊 +2 位作者 贾永镒 叶秉良 马锃宏 《农业工程学报》 CSCD 北大核心 2024年第23期248-257,共10页
精准高效的莲蓬质量分级算法是实现莲蓬采后自动化加工的重要一环。针对目前莲蓬果实的采后质量分级研究较少的问题,该研究建立了莲蓬果实质量分级原则,提出了改进YOLOv3-Tiny(you only look once version 3-Tiny)模型的莲蓬质量分级算... 精准高效的莲蓬质量分级算法是实现莲蓬采后自动化加工的重要一环。针对目前莲蓬果实的采后质量分级研究较少的问题,该研究建立了莲蓬果实质量分级原则,提出了改进YOLOv3-Tiny(you only look once version 3-Tiny)模型的莲蓬质量分级算法。首先在3种光照条件下架设摄像头垂直采集莲蓬图像并建立试验数据集,通过数据增强技术扩充数据集;接着使用K均值聚类算法重新设计先验锚框尺度,提高先验锚框的回归精度。随后以YOLOv3-Tiny原骨干网络为基础,加入空间金字塔池化模块(spatial pyramid pooling,SPP),提升网络提取特征信息的能力;最后利用YOLOv3-Tiny的参数进化模块为该模型进化出一套合适的超参数。试验结果表明,改进的YOLOv3-Tiny模型对莲子识别的平均精度均值(mean average precision,mAP)和召回率(recall)分别为96.80%和94.60%;与原YOLOv3-Tiny模型相比,mAP提高12.49个百分点,召回率提高11.59个百分点,并且每秒传输帧数达到25帧,是Faster R-CNN网络模型的1.24倍。试验数据说明所提改进算法对于莲蓬果实上的莲子具有更好的识别效果,而且满足实时检测的要求,可以为莲蓬质量分级研究提供技术参考。 展开更多
关键词 深度学习 分级 模型 yolov3-tiny 莲蓬 量化
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部