针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同...针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。展开更多
针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-...针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。展开更多
精准高效的莲蓬质量分级算法是实现莲蓬采后自动化加工的重要一环。针对目前莲蓬果实的采后质量分级研究较少的问题,该研究建立了莲蓬果实质量分级原则,提出了改进YOLOv3-Tiny(you only look once version 3-Tiny)模型的莲蓬质量分级算...精准高效的莲蓬质量分级算法是实现莲蓬采后自动化加工的重要一环。针对目前莲蓬果实的采后质量分级研究较少的问题,该研究建立了莲蓬果实质量分级原则,提出了改进YOLOv3-Tiny(you only look once version 3-Tiny)模型的莲蓬质量分级算法。首先在3种光照条件下架设摄像头垂直采集莲蓬图像并建立试验数据集,通过数据增强技术扩充数据集;接着使用K均值聚类算法重新设计先验锚框尺度,提高先验锚框的回归精度。随后以YOLOv3-Tiny原骨干网络为基础,加入空间金字塔池化模块(spatial pyramid pooling,SPP),提升网络提取特征信息的能力;最后利用YOLOv3-Tiny的参数进化模块为该模型进化出一套合适的超参数。试验结果表明,改进的YOLOv3-Tiny模型对莲子识别的平均精度均值(mean average precision,mAP)和召回率(recall)分别为96.80%和94.60%;与原YOLOv3-Tiny模型相比,mAP提高12.49个百分点,召回率提高11.59个百分点,并且每秒传输帧数达到25帧,是Faster R-CNN网络模型的1.24倍。试验数据说明所提改进算法对于莲蓬果实上的莲子具有更好的识别效果,而且满足实时检测的要求,可以为莲蓬质量分级研究提供技术参考。展开更多
文摘针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。
文摘针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。
文摘精准高效的莲蓬质量分级算法是实现莲蓬采后自动化加工的重要一环。针对目前莲蓬果实的采后质量分级研究较少的问题,该研究建立了莲蓬果实质量分级原则,提出了改进YOLOv3-Tiny(you only look once version 3-Tiny)模型的莲蓬质量分级算法。首先在3种光照条件下架设摄像头垂直采集莲蓬图像并建立试验数据集,通过数据增强技术扩充数据集;接着使用K均值聚类算法重新设计先验锚框尺度,提高先验锚框的回归精度。随后以YOLOv3-Tiny原骨干网络为基础,加入空间金字塔池化模块(spatial pyramid pooling,SPP),提升网络提取特征信息的能力;最后利用YOLOv3-Tiny的参数进化模块为该模型进化出一套合适的超参数。试验结果表明,改进的YOLOv3-Tiny模型对莲子识别的平均精度均值(mean average precision,mAP)和召回率(recall)分别为96.80%和94.60%;与原YOLOv3-Tiny模型相比,mAP提高12.49个百分点,召回率提高11.59个百分点,并且每秒传输帧数达到25帧,是Faster R-CNN网络模型的1.24倍。试验数据说明所提改进算法对于莲蓬果实上的莲子具有更好的识别效果,而且满足实时检测的要求,可以为莲蓬质量分级研究提供技术参考。