期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
识别安全帽佩戴的轻量化网络模型 被引量:2
1
作者 胡文骏 杨莉琼 +1 位作者 肖宇峰 何宏森 《计算机工程与应用》 CSCD 北大核心 2023年第13期149-155,共7页
安全帽佩戴识别是一种分类少的目标检测任务,使用现有精度较高的大型深度学习网络模型来识别安全帽佩戴,存在参数冗余问题且计算较大,不利于部署在计算量有限的嵌入式设备中以适应实际的工地环境。针对以上问题,提出了一种适合部署在嵌... 安全帽佩戴识别是一种分类少的目标检测任务,使用现有精度较高的大型深度学习网络模型来识别安全帽佩戴,存在参数冗余问题且计算较大,不利于部署在计算量有限的嵌入式设备中以适应实际的工地环境。针对以上问题,提出了一种适合部署在嵌入式设备中的轻量化网络模型YOLO-Ghost-BiFPNs3。在YOLOv4的基础上,基于Ghost模块重构新的网络结构并对网络的深度和宽度进行裁剪;设计一种基于通道加权相加的轻量化模块BiFPNs3来替换原来计算量较大的FPN+PAN的结构;采用更容易量化的H-Swish激活函数;在Safety-Helmet-Wearing-Dataset数据集上进行实验,在测试集上,mAP@0.5为91.1%,相较于YOLOv4精度仅损失1个百分点,比轻量化网络模型YOLOv4-Tiny精度高26个百分点。参数量为原来YOLOv4的3%,计算量仅为原来YOLOv4的5.8%。 展开更多
关键词 目标检测 轻量化网络模型 安全帽佩戴识别 Ghost模块
在线阅读 下载PDF
基于轻量化深度学习Mobilenet-SSD网络模型的海珍品检测方法 被引量:11
2
作者 俞伟聪 郭显久 +2 位作者 刘钰发 刘婷 李雅薇 《大连海洋大学学报》 CAS CSCD 北大核心 2021年第2期340-346,共7页
为精确掌握水下海珍品养殖分布情况,摆脱传统上依赖人工潜水了解海珍品情况的方式,提出了一种基于轻量化深度学习的Mobilenet-SSD网络模型并用于海珍品检测,该方法对在渔船下方的水下摄像头所采集的海珍品图像实时进行目标快速检测。结... 为精确掌握水下海珍品养殖分布情况,摆脱传统上依赖人工潜水了解海珍品情况的方式,提出了一种基于轻量化深度学习的Mobilenet-SSD网络模型并用于海珍品检测,该方法对在渔船下方的水下摄像头所采集的海珍品图像实时进行目标快速检测。结果表明:采用本研究中建立的Mobilenet-SSD模型,在海胆、海参、扇贝等3种海珍品上建立数据集进行训练,可实现水下海珍品的精确识别,海胆、海参、扇贝的识别准确率分别为81.43%、86.02%、89.44%,总体平均准确率为85.79%;将Mobilenet-SSD网络模型分别与Tiny-YOLO和VGG-SSD网络模型进行比较,在相同设备上,Mobilenet-SSD网络模型相较Tiny-YOLO网络模型能更好地利用目标特征,同时较VGG-SSD网络模型节约80%的用时,实现了准确性与实时性的兼顾。研究表明,本研究中构建的Mobilenet-SSD网络模型,可用于水产养殖环境中水下海珍品的准确识别。 展开更多
关键词 海珍品识别 深度学习 图像增强 轻量化网络模型
在线阅读 下载PDF
基于快速下采样的轻量化网络设计方法及人脸识别应用 被引量:2
3
作者 王佳皓 徐树公 陆恒杰 《电子学报》 EI CAS CSCD 北大核心 2023年第8期2226-2237,共12页
高精度卷积神经网络推理成本往往较高,很难在资源受限的嵌入式设备上进行实时推理.本文通过分析不同类型卷积对模型推理速度的影响因素,首次指出除了模型计算量,模型的特征图输出量也是影响推理速度的一个关键因素.而现有基于深度分离... 高精度卷积神经网络推理成本往往较高,很难在资源受限的嵌入式设备上进行实时推理.本文通过分析不同类型卷积对模型推理速度的影响因素,首次指出除了模型计算量,模型的特征图输出量也是影响推理速度的一个关键因素.而现有基于深度分离卷积的轻量化方法仅把模型的计算量作为模型轻量化指标,并未考虑特征图输出量对模型推理速度的影响.根据该发现,本文结合标准卷积提出一种基于快速下采样的模型轻量化加速方法,通过快速减少特征图尺寸来同时减少模型计算量和特征图输出量.本文方法设计的轻量化模型的特征提取能力和不同平台的推理速度均优于现有的基于深度分离卷积的轻量化方法.更进一步地,本文利用该方法针对人脸识别任务提出一个快速人脸识别模型FDFaceNet.与现有的轻量化人脸识别模型相比,FDFaceNet准确率更高,在不同平台上的推理速度更快. 展开更多
关键词 轻量化网络模型设计 神经网络加速 量化人脸识别 人脸检测识别系统 嵌入式设备
在线阅读 下载PDF
基于改进RT-DETR的铁路施工场景下人员安全穿戴检测 被引量:1
4
作者 冯爽 王万齐 +1 位作者 杨文 胡昊 《铁道学报》 北大核心 2025年第2期92-101,共10页
针对铁路施工环境较复杂,安全穿戴目标较小难以检测,边缘计算设备资源有限的问题,提出一种基于改进RT-DETR的铁路施工场景下人员安全穿戴检测模型。首先,引用轻量级EfficientViT作为特征提取网络,通过级联分组注意力,解决多头自注意力... 针对铁路施工环境较复杂,安全穿戴目标较小难以检测,边缘计算设备资源有限的问题,提出一种基于改进RT-DETR的铁路施工场景下人员安全穿戴检测模型。首先,引用轻量级EfficientViT作为特征提取网络,通过级联分组注意力,解决多头自注意力计算冗余问题,提高注意力头的多样性。其次,采用HWD-ADown下采样模块,应用Haar小波变换保留更多细节信息来改善错检问题,通过将特征图切分再进行卷积的方式减少卷积操作的参数量,进一步降低模型复杂度,精度维持原来相近水平。最后,设计一种新的损失函数Inner-DIoU,在加速边界框回归速度的同时提高模型检测的泛化能力。实验结果表明,改进模型精确率为92.6%,召回率为84.4%,平均精度均值为90%,与基准模型相比分别提高2.7%、2.1%和3%;模型大小为19.9 MB,参数量为985.6万个,GFLOPs为25.5,与基准模型相比分别降低48.4%、50.4%和55.4%;FPS为94.3,提高了34.7%。提出的模型能够满足铁路施工场景下对检测精度和轻量化的需求。 展开更多
关键词 铁路施工 目标检测 RT-DETR 轻量化网络模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部