期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断
1
作者 章力 邓艾东 +2 位作者 王敏 卞文彬 张宇剑 《动力工程学报》 北大核心 2025年第4期571-581,共11页
针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特... 针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特征信息;同时,构建多尺度减法神经网络模型,关注层级差异;其次,引入轻量化模块,减少内存访问;然后,结合通道注意力机制,调整特征权重;最后,将故障样本输入到网络模型中,实现精确分类。利用风电机组传动系统模拟实验台采集的样本数据进行诊断任务。结果表明:该故障诊断模型能够有效克服传统多尺度卷积神经网络模型网络层数多、参数量大所带来的弊端,能够充分关注各层级之间的差异信息,减少冗余信息的提取,精确定位故障特征,缩短模型训练时间,在恒定工况、变工况和强噪声工况下都具有较高的诊断精度. 展开更多
关键词 滚动轴承 故障诊断 多尺度减法神经网络 量化模块 通道注意力机制 变工况
在线阅读 下载PDF
基于像素差异度注意力机制的轻量化YOLOv5行人检测算法 被引量:1
2
作者 陈高宇 王晓军 李晓航 《计算机工程与应用》 北大核心 2025年第1期291-299,共9页
针对实时行人检测场景存在遮挡、形态姿势不同的行人目标,YOLOv5模型对于这些目标检测有明显的漏检问题,提出一种像素差异度注意力机制(pixel difference attention,PDA),不同于传统的通道注意力机制用全局均值池化(global average pool... 针对实时行人检测场景存在遮挡、形态姿势不同的行人目标,YOLOv5模型对于这些目标检测有明显的漏检问题,提出一种像素差异度注意力机制(pixel difference attention,PDA),不同于传统的通道注意力机制用全局均值池化(global average pooling,GAP)、全局最大值池化(global max pooling,GMP)来概括整张特征图的信息,全局池化将空间压缩成一个值来表征整个通道,造成了空间信息的流失,PDA将空间信息沿高和宽分别压缩,并将其分别与通道信息联系起来做注意力加权操作,同时提出一种新的通道描述指标表征通道信息,增强空间信息与通道信息的交互,使模型更容易关注到综合了空间和通道维度上的特征图的重要信息,在主干网络末端插入PDA后使模型平均精度(mean average precision,mAP)0.5提升了2.4个百分点,mAP0.5:0.95提升了4.4个百分点;针对实时检测场景的部署和检测速度要求模型拥有较少的参数量和计算量,因此提出了新的轻量化特征提取模块AC3代替原YOLOv5模型中的C3模块,该模块使插入PDA后的改进模型在精度仅仅损失0.2个百分点的情况下,参数量(parameters,Param.)减少了20%左右,浮点运算量(giga floating-point operations,GFLOPs)减少了30%左右。实验结果表明,最终的改进模型比YOLOv5s原模型在VOC行人数据集上mAP0.5提升了2.2个百分点,mAP0.5:0.95提升了3.1个百分点,且参数量减少了20%左右,浮点运算量减少了30%左右,在GTX1050上的检测速度(frames per second,FPS)提升了4。 展开更多
关键词 YOLOv5 行人检测 注意力机制 量化模型 通道描述指标
在线阅读 下载PDF
基于混合注意力卷积模型的地铁乘降通道客流检测算法研究
3
作者 陈文昊 刘伟铭 董佳勋 《铁道标准设计》 北大核心 2025年第9期186-194,共9页
在无人驾驶地铁运营线路中,后台控制系统需要实时检测和分析客流信息数据,及时发现异常情况。针对现有模型种类单一、可改进程度低、硬件成本限制等问题,提出一种基于混合注意力卷积模型的客流检测算法。该算法将CNN模型与ViT模型结合起... 在无人驾驶地铁运营线路中,后台控制系统需要实时检测和分析客流信息数据,及时发现异常情况。针对现有模型种类单一、可改进程度低、硬件成本限制等问题,提出一种基于混合注意力卷积模型的客流检测算法。该算法将CNN模型与ViT模型结合起来,使用即插即用的ECA注意力模块和深度可分离卷积优化内部结构,优化特征提取能力的同时提升模型检测速度。在深层ViT结构中,提出一种新型模型轻量化方法,进一步简化模型,改善ViT中注意力计算量大的问题。算法通过融合所有不同尺度的最终特征图,得到检测结果热力图。数据样本基于顶装摄像头拍摄,可以有效规避遮挡问题。某地铁站台真实乘降数据集采集及实验结果表明,提出的方法在一般样本数据集下的平均检测精度达到97.4%,在困难样本数据集下的平均检测精度达到89.3%,相比其他模型能更好地检测小尺度乘客目标;在性能更优的同时,实时检测速度达到50帧/s,相比同类模型平均检测速度加快45%。本研究为地铁客流场景提供一种新颖的检测算法,能够有效提高低成本设备的检测性能与速度,为后续客流跟踪和异常检测提供基础。 展开更多
关键词 地铁 乘降通道 注意力机制 卷积模型 客流检测 量化
在线阅读 下载PDF
混合数据驱动的轻量化YOLOv5故障选线方法 被引量:4
4
作者 郝帅 田卓 +2 位作者 马旭 李威 李嘉豪 《西安科技大学学报》 CAS 北大核心 2024年第5期966-975,共10页
针对传统选线方法精度低、实时性差、易受噪声干扰的问题,提出一种混合数据驱动的轻量化YOLOv5选线方法,简记为MSE-YOLOv5。首先,以零序电流作为区分故障线路与非故障线路的判断依据,为了增强二者间数据对比差异性,利用小波变换将零序... 针对传统选线方法精度低、实时性差、易受噪声干扰的问题,提出一种混合数据驱动的轻量化YOLOv5选线方法,简记为MSE-YOLOv5。首先,以零序电流作为区分故障线路与非故障线路的判断依据,为了增强二者间数据对比差异性,利用小波变换将零序电流信号映射为二维时频图;其次,为了扩充样本数量,利用搭建的小电流接地系统仿真模型,通过改变故障点位置、初相位以及接地电阻等参数生成仿真数据,与真实数据构成混合数据集;然后,为了减少选线时背景噪声对微弱故障信号特征的影响,在所搭建检测网络的颈部网络中引入通道注意力模块,从而增强故障特征的表达能力;最后,为了提高选线实时性,在网络中引入轻量化网络以减少其参数量与运算量。为了验证所提出方法的优势,利用某变电站真实故障数据进行测试,并与4种经典算法进行比较。结果表明:所提混合数据驱动的轻量化YOLOv5故障选线方法具有较高精度,其选线精度可达95.2%,即使在噪声干扰条件下,选线精度依然可以保持在90%以上;具有更轻的体量及更快的选线速度,参数量下降至原网络的1/5,计算量下降至1/7,检测速度可达7.7 ms。因此,混合数据驱动的轻量化YOLOv5故障选线方法具有体量小、速度快、精度高的优点,有利于后期将其部署到现场设备中。 展开更多
关键词 故障选线 小波变换 混合数据集 通道注意力模块 量化网络
在线阅读 下载PDF
一种轻量化CNN-Transformer的苹果叶片病害分类算法
5
作者 嵇春梅 周鑫志 叶烨华 《江苏农业科学》 北大核心 2025年第9期216-224,共9页
准确识别苹果叶片病害,对于提高苹果产量和质量具有重要意义。为了解决现有的基于深度学习算法在苹果叶片病害分类识别中精度低、参数量大等问题,提出一种基于轻量化CNN-Transformer的苹果叶片病害分类模型。首先,使用数据增强技术扩充... 准确识别苹果叶片病害,对于提高苹果产量和质量具有重要意义。为了解决现有的基于深度学习算法在苹果叶片病害分类识别中精度低、参数量大等问题,提出一种基于轻量化CNN-Transformer的苹果叶片病害分类模型。首先,使用数据增强技术扩充苹果叶片病害数据集,以提高模型的泛化能力;其次,利用多层卷积操作来提取输入图像的局部特征表示,增强模型对图像细节的敏感性;设计多头局部自注意力机制模块,建立图像中不同区域之间的全局上下文依赖关系,提高模型对图像语义的理解能力;提出随机位置编码,更好地捕捉图像中的空间信息。试验结果显示,本研究模型在苹果叶片病害分类精度、GPU内存使用、分类时间方面的表现优于其他深度学习模型,能够有效识别苹果叶片病害的类型和程度;与单一Transformer模型相比,本研究模型在节约40%内存资源的同时,分类时间降低了55%,精确率、召回率、F_(1)分数分别达到98.2%、97.5%、97.3%。 展开更多
关键词 苹果叶片病害 CNN-Transformer 局部注意力机制 随机位置编码 量化
在线阅读 下载PDF
基于注意力与通道重排的无人机对地目标检测算法 被引量:1
6
作者 李佳一 闫振纲 +3 位作者 闫克丁 赵英然 檀蕊莲 梁超 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第3期306-313,共8页
无人机自主察打对地攻击场景中,针对无人机作战时效性强,地面目标识别场景复杂,存在模型训练、推理速度慢,小目标检测漏检、误检的问题,提出一种基于注意力机制与通道重排思想的无人机对地目标检测算法。该算法引入CA(coordinate attent... 无人机自主察打对地攻击场景中,针对无人机作战时效性强,地面目标识别场景复杂,存在模型训练、推理速度慢,小目标检测漏检、误检的问题,提出一种基于注意力机制与通道重排思想的无人机对地目标检测算法。该算法引入CA(coordinate attention)注意力机制,可提高网络对关注部分的特征提取能力;且对主干网络进行通道重排(channel shuffle)轻量化处理,可有效减少多次卷积造成的特征损失;最后,为提升战时训练及推理速度,替换部分激活函数为H-Swish,优化其损失函数为CIoU(complete intersection over union)。实验证明:采用改进的新算法,提升了28.4%训练速度,目标识别的平均精度均值(mean average precision, mAP)达99.1%,可实现最小目标检测为19*25像素,经TensorRT加速后检测速率达72.99 FPS,满足实时检测需求,针对复杂地形下的坦克小目标检测性能较好。 展开更多
关键词 小目标检测 深度学习 注意力机制 通道重排 量化模型
在线阅读 下载PDF
融合注意力机制的轨道入侵异物检测轻量级模型研究 被引量:20
7
作者 管岭 贾利民 谢征宇 《铁道学报》 EI CAS CSCD 北大核心 2023年第5期72-81,共10页
基于智能视频分析的轨道线路环境入侵物自主识别是保障轨道交通运营安全的关键技术之一。然而基于神经网络的高精度目标检测模型严重依赖算力,部署成本高,很难普及运用。为此,提出一种改进yolov4-tiny的轻量级网络模型。在网络主干,通... 基于智能视频分析的轨道线路环境入侵物自主识别是保障轨道交通运营安全的关键技术之一。然而基于神经网络的高精度目标检测模型严重依赖算力,部署成本高,很难普及运用。为此,提出一种改进yolov4-tiny的轻量级网络模型。在网络主干,通过融合跨阶段结构和通道混洗策略,提出CSPShuffleNet结构,加快网络推理;在网络颈部,引入多头注意力机制,增强网络目标定位能力;在网络头部,使用深度可分离卷积替换传统卷积,进一步压缩网络参数量。基于铁路异物数据集的实验结果表明:相比于原始yolov4-tiny,本模型的均值平均精度最大提高1.4%,参数量减少49.9%,模型容量减少55.4%。验证了本模型对于固定平台和移动平台检测系统的普适性,从而为铁路安全保障提供决策支持。 展开更多
关键词 异物入侵检测 量化神经网络 深度可分离卷积 通道混洗 多头注意力机制
在线阅读 下载PDF
基于回归模型与注意力的轻量化SAR舰船检测模型 被引量:7
8
作者 李丽圆 李潇雁 +2 位作者 胡琸悦 苏晓锋 陈凡胜 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2022年第3期618-625,共8页
合成孔径雷达(SAR)具有不受云层干扰、可全天时、全天候对地观测的特点,基于SAR图像的舰船检测已广泛用于海洋搜救、港口侦察、领海防御等民用或军用领域。然而,与大型舰船相比,像素点少、对比度低的小型舰船存在漏检率高的问题,并且速... 合成孔径雷达(SAR)具有不受云层干扰、可全天时、全天候对地观测的特点,基于SAR图像的舰船检测已广泛用于海洋搜救、港口侦察、领海防御等民用或军用领域。然而,与大型舰船相比,像素点少、对比度低的小型舰船存在漏检率高的问题,并且速度和精度之间的平衡成为舰船检测算法天基应用的难点。针对以上问题,本文提出了一种基于YOLOv5s模型改进的舰船检测轻量化模型(ImShips)。首先,针对船体大小差异导致的漏检问题,采取在网络底部使用感受野较小的标准卷积,提升了模型对小规模舰船空间信息的获取能力。同时,在网络顶部设计了放大感受野的扩张卷积,保留了更多的语义特征,有利于大目标的特征提取。接着,提出将轻量级的通道注意力机制应用于YOLOv5的骨干网络和特征融合网络,通过对提取到的特征按重要性分配权重,实现纹理信息的筛选。最后,在下采样时采取深度可分离卷积代替标准卷积,减少了模型参数的数量,进一步提高了模型的推理速度。实验结果表明,在SAR舰船检测SSDD和ISSID数据集中,改进后的ImShips模型在保证精度的同时,所需的浮点计算数比YOLOv5s模型减少了45.61%,检测速度提高了8.31%。ImShips模型网络规模小、检测速度快,在实时天基舰船检测中具有较大的应用潜力。 展开更多
关键词 舰船检测 YOLO回归模型 通道注意力机制 量化
在线阅读 下载PDF
基于混合域注意力机制的服装关键点定位及属性预测算法 被引量:3
9
作者 雷冬冬 王俊英 +2 位作者 董方敏 臧兆祥 聂雄锋 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第4期28-35,共8页
针对服装形变和模特复杂姿态影响服装视觉分析准确率的问题,提出一个基于混合域注意力机制的服装关键点定位与属性预测算法,该算法利用循环十字交叉注意力(recurrent criss-cross attention,RCCA)模块得到服装图像的每个像素的上下文信... 针对服装形变和模特复杂姿态影响服装视觉分析准确率的问题,提出一个基于混合域注意力机制的服装关键点定位与属性预测算法,该算法利用循环十字交叉注意力(recurrent criss-cross attention,RCCA)模块得到服装图像的每个像素的上下文信息,从而捕获服装关键点之间潜在的空间几何关系,再融合服装图像的空间联系和通道交互信息来获得更好的服装关键点定位和属性预测效果。服装的空间特征由空间注意力分支网络在关键点热图的基础上学习得到,而通道交互信息通过局部跨通道交互策略生成通道注意力来捕获。试验结果表明,所提算法降低了服装关键点定位的归一化误差,并在一定程度上提高了服装的分类与属性预测效果。 展开更多
关键词 服装关键点定位 属性预测 混合注意力机制 局部空间连接 局部通道交互
在线阅读 下载PDF
基于空间通道注意力机制与多尺度融合的交通标志识别研究 被引量:9
10
作者 黄志强 李军 《南京邮电大学学报(自然科学版)》 北大核心 2022年第2期93-102,共10页
通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图... 通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图的语义信息,将第19层卷积层通过上采样后与第7层卷积层相连接,多尺度融合后输入YOLO层形成新的特征金字塔,以此提高小目标的识别率。同时,为使网络更加关注交通标志的细节信息,在特征金字塔网络中增添能够增强前景信息降低背景信息的空间通道注意力机制。使用Kmeans聚类算法对数据集作聚类处理,获得一组先验框。在长沙理工大学交通标志数据集上进行测试,实验结果表明,改进后算法的识别率达到91.8%,与YOLOV3-tiny算法相比提高了24.9个百分点,而与YOLOV3算法相比,每张图片的检测时间降低至0.133s,降低了49.6%,该算法具有较强的实时性和准确性。 展开更多
关键词 交通标志 量化网络 YOLOV3-3ctiny 多尺度融合 特征金字塔 空间通道注意力机制
在线阅读 下载PDF
一种改进的基于YOLOv5s的轻量化航拍目标检测模型 被引量:5
11
作者 陈海燕 毛利宏 《计算机科学》 CSCD 北大核心 2024年第S02期465-472,共8页
无人机航拍图像背景复杂、目标密集且小目标占比大,加大了目标检测的难度。基于深度学习的目标检测模型计算复杂度高,难以部署在无人机搭载的嵌入式设备上。针对此问题,提出了一种改进的基于YOLOv5s的轻量化航拍图像目标检测模型。首先... 无人机航拍图像背景复杂、目标密集且小目标占比大,加大了目标检测的难度。基于深度学习的目标检测模型计算复杂度高,难以部署在无人机搭载的嵌入式设备上。针对此问题,提出了一种改进的基于YOLOv5s的轻量化航拍图像目标检测模型。首先将YOLOv5s主干网络的C3模块BottleNeck替换为轻量级的ShuffleNetv2网络,来降低模型的参数量和计算复杂度;其次在ShuffleNetv2网络中引入跨层信息交叉融合、SE通道注意力机制以及残差连接,来缓解卷积操作导致的特征通道数减少、网络中间层特征图的信息利用不充分问题;再次在YOLOv5s多尺度特征融合网络中引入SE通道注意力机制,来提高网络对关键特征的捕捉和提取能力;最后对改进的目标检测模型采用通道剪枝的方法使模型进一步轻量化。实验结果表明:在NWPU VHR-10数据集上,改进后的模型与YOLOv5s模型相比,目标检测的准确率和平均精度均值分别提升了3.5%,1.9%,模型的参数量和计算量降低了76%,48.7%,模型大小压缩了73.8%,检测速度提升了48%。 展开更多
关键词 目标检测 量化网络 YOLOv5s SE通道注意力机制 通道剪枝
在线阅读 下载PDF
基于全方位深层加权轻量化网络的冠脉造影图像超分辨率重建方法 被引量:2
12
作者 张博伟 何彦霖 +2 位作者 王康 黄宇辰 祝连庆 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期200-209,共10页
针对介入手术中对冠状动脉造影图像纹理清晰的需求,本文提出一种基于全方位深层加权轻量化网络的超分辨率图像重建方法。首先通过设计局部卷积模块,降低特征图的维度减小其参数量,加快模型的处理速度;接着采用自注意力机制模块,融合图... 针对介入手术中对冠状动脉造影图像纹理清晰的需求,本文提出一种基于全方位深层加权轻量化网络的超分辨率图像重建方法。首先通过设计局部卷积模块,降低特征图的维度减小其参数量,加快模型的处理速度;接着采用自注意力机制模块,融合图像的通道和空间信息,获得图像的丰富高频细节特征;此外,为了进一步提取图像的深层特征信息,研究设计了级联和权重匹配的层注意力结构,为图像不同深度的特征分配不同的权重,实现图像的超分辨率重建。最后为了使本文所研究方法在真实介入手术冠脉造影图像中有更强的泛化能力,本文构建了冠脉造影图像数据集(CAID)用于网络模型的训练和测试。实验测试结果表明,与Omni-SR算法相比,本文所提出算法在参数量减少32.3%、运行时间减少17.74%的同时,其重建图像的质量在客观指标和主观感受上均优于其他对比算法,且在放大倍数为4时,PSNR和SSIM的平均值在CAID数据集上分别提高了0.72 dB和0.012 2,在公共数据集上分别提高了0.13 dB和0.004 4。 展开更多
关键词 冠脉造影图像 超分辨率重建 局部卷积 注意力机制 量化
在线阅读 下载PDF
基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测 被引量:11
13
作者 李飞 胡坤 +2 位作者 张勇 王文善 蒋浩 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第11期2156-2167,共12页
针对输送带纵向撕裂目标检测维度单一、模型复杂度高等问题,提出一种高效的MobileNetv3及YOLOv4集成网络输送带纵向撕裂多维度实时检测方法.基于YOLOv4目标识别算法,通过将轻量化网络Mobile-Netv3代替CSPDarknet53作为骨干网络,结合高... 针对输送带纵向撕裂目标检测维度单一、模型复杂度高等问题,提出一种高效的MobileNetv3及YOLOv4集成网络输送带纵向撕裂多维度实时检测方法.基于YOLOv4目标识别算法,通过将轻量化网络Mobile-Netv3代替CSPDarknet53作为骨干网络,结合高效通道域ECA模块和空间域注意力机制(STNet)构建混合域注意力网络(ECSNet),改进了MobileNetv3嵌入ECSNet,并且提升了模型对空间和通道的关注度.引入深度可分离卷积块代替网络中3*3卷积,并将YOLOv4的检测头(Prediction Heads)缩减为2种尺度,轻量化模型降低网络复杂度和训练难度,完成ECSMv3_YOLOv4模型的搭建,使用K-means聚类6个Anchors预测目标框高宽,提高网络对表面撕裂的检测性能.研制带式输送机多维度智能巡检样机,采集制作输送带多维度面的纵向撕裂数据集,开展网络模型的训练、测试、识别和定位实验.结果表明,提出算法在测试集中的平均识别准确率为97.8%,识别速度为37帧/s,模型的计算量和参数量为4.882 G和8.851 M,通过试验不同的网络模型效果和改变光照强度,该方法体现出检测精度高、速度快和轻量化等优点,具备更强的适应性和抗干扰能力. 展开更多
关键词 纵向撕裂 多维度检测 MobileNetv3 混合注意力机制 YOLOv4 量化
在线阅读 下载PDF
融合轻量化神经网络的矿用输送带钢芯损伤检测方法
14
作者 盛彬 吴利刚 张楠 《控制工程》 CSCD 北大核心 2024年第7期1254-1262,共9页
为了提高矿用输送带钢芯损伤的检测准确度和实时性,对传统YOLOv5算法进行了改进。首先,引入轻量化神经网络,大幅度降低模型复杂度和运算量;其次,引入高效通道注意力(efficient channel attention,ECA)机制,提升检测准确度,并加快损失函... 为了提高矿用输送带钢芯损伤的检测准确度和实时性,对传统YOLOv5算法进行了改进。首先,引入轻量化神经网络,大幅度降低模型复杂度和运算量;其次,引入高效通道注意力(efficient channel attention,ECA)机制,提升检测准确度,并加快损失函数的收敛速度;再次,采用加权双向特征金字塔网络(bi-directional feature pyramid network,BiFPN),融合高分辨率和低分辨率的图像特征,提升模型的综合性能。实验结果表明,与YOLOv5模型相比,改进模型的参数量和浮点运算量分别减少了约64.52%和69.07%,网络层数由468层降低至295层,检测精确度和召回率分别提升了约15.83%和3.93%,检测速度达到了109.89帧/s。 展开更多
关键词 量化神经网络 注意力机制 通道特征融合 实时检测 深度学习
在线阅读 下载PDF
改进YOLOv5s的轨道障碍物检测模型轻量化研究 被引量:23
15
作者 李昂 孙士杰 +3 位作者 张朝阳 冯明涛 吴成中 李旺 《计算机工程与应用》 CSCD 北大核心 2023年第4期197-207,共11页
针对传统列车轨道障碍物检测方法实时性差和对小目标检测精度低的不足,提出一种改进YOLOv5s检测网络的轻量化障碍物检测模型。引入更加轻量化的Mixup数据增强方式,替代算法中原有的Mosaic数据增强方式;引入GhostNet网络结构中的深度可... 针对传统列车轨道障碍物检测方法实时性差和对小目标检测精度低的不足,提出一种改进YOLOv5s检测网络的轻量化障碍物检测模型。引入更加轻量化的Mixup数据增强方式,替代算法中原有的Mosaic数据增强方式;引入GhostNet网络结构中的深度可分离卷积GhostConv,替代原有YOLOv5s模型中特征提取网络与特征融合网络中的普通卷积层,减小了模型的计算开销;在模型特征提取网络末端加入CA空间注意力机制,让算法在训练过程中减少了重要位置信息的丢失,弥补了改进GhostNet对检测精度的损失;将改进后的模型进行稀疏训练和通道剪枝操作,剪掉对检测精度影响不大的通道,同时保留重要的特征信息,使模型更加轻量化。实验结果表明,改进后的模型在自制的多样化轨道交通数据集上,相较于原始YOLOv5s算法,在模型大小减小9.7 MB,检测速度提高14 FPS的前提下,检测精度提升了1.0个百分点。同时与目前主流的检测算法对比,在检测精度与检测速度上也具有一定的优越性,适用于复杂轨道交通环境下的障碍物目标检测。 展开更多
关键词 目标检测 YOLOv5s GhostNet 注意力机制 通道剪枝 量化
在线阅读 下载PDF
MPE-YOLOv5:面向边缘计算的轻量化YOLOv5手势识别算法 被引量:7
16
作者 黄凯雯 房宵杰 +2 位作者 梅林 田涛涛 杜兆鹏 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第5期1-13,共13页
针对边缘设备计算和存储能力差的问题,本文对传统YOLOv5模型中用于特征提取的主干网络CSPDarkNet53进行轻量化处理,提出了一种轻量化MPE-YOLOv5手势识别算法,以实现模型在低功耗边缘设备上的部署;针对轻量化模型提取特征较少而导致的难... 针对边缘设备计算和存储能力差的问题,本文对传统YOLOv5模型中用于特征提取的主干网络CSPDarkNet53进行轻量化处理,提出了一种轻量化MPE-YOLOv5手势识别算法,以实现模型在低功耗边缘设备上的部署;针对轻量化模型提取特征较少而导致的难以识别大尺度变换目标和微小目标问题,对M-YOLOv5网络设计添加有效通道注意力机制(efficient channel attention,ECA),以缓解因特征通道减少而导致的高层特征信息丢失的问题;同时增加针对微小目标的检测层,提高对微小目标手势的敏感度;并选用EIoU作为预测锚框的损失函数,以提高模型的定位精度。本文在自制数据集和NUS-Ⅱ公共数据集上验证了MPE-YOLOv5算法有效性,并将MPE-YOLOv5算法与轻量化后的M-YOLOv5算法和原始的YOLOv5算法在自制数据集上进行了对比实验。实验结果表明,改进算法的模型参数量、模型大小和计算复杂度分别是原算法的21.16%、25.33%和27.33%,平均精度可达97.2%;与轻量化模型M-YOLOv5相比,MPE-YOLOv5能够在保持原来效率的同时,使平均精度提升8.72%。因此,所提MPE-YOLOv5算法能够较好地平衡模型的检测精度和实时推理速度,可实现在硬件受限的边缘终端上进行部署。 展开更多
关键词 手势识别 YOLOv5 量化模型 通道注意力机制 损失函数
在线阅读 下载PDF
基于轻量化视觉Transformer的花卉识别 被引量:6
17
作者 熊举举 徐杨 +1 位作者 范润泽 孙少聪 《图学学报》 CSCD 北大核心 2023年第2期271-279,共9页
由于不同种类花卉之间的相似性以及同种花卉的差异性,提取局部特征信息的卷积神经网络(CNN)在花卉图像的识别上取得的结果不够理想。在Swin Transformer(Swin-T)网络的基础上,提出了一种轻量型的Transformer网络LWFormer。首先,该网络... 由于不同种类花卉之间的相似性以及同种花卉的差异性,提取局部特征信息的卷积神经网络(CNN)在花卉图像的识别上取得的结果不够理想。在Swin Transformer(Swin-T)网络的基础上,提出了一种轻量型的Transformer网络LWFormer。首先,该网络将基于移动窗口的PoolFormer模块引入Swin-T网络的第一、二阶段,对网络进行轻量化。其次,引入了双通道注意力机制,2个独立的通道分别关注了特征图的“位置”和“内容”,提高网络提取全局特征信息的能力。最后,使用了对比损失函数,进一步优化了网络的性能。在Oxford 102 Flower Dataset和104 Flowers Garden of Eden这2个公开的数据集上对改进的模型进行评估,并与其他方法进行对比,在这2个数据集上,分别得到了88.1%与87.3%的准确率。与Swin-T网络相比,该网络参数量降低了33.45%,FLOPs降低了28.89%,throughtput提高了91.45%,准确率提高了1.8%。实验结果表明,该网络在提升了准确率的同时降低了参数量,得到了速度与精度地提升。 展开更多
关键词 花卉识别 量化 注意力机制 通道注意力 对比损失函数
在线阅读 下载PDF
基于改进YOLOv8n的井下人员多目标检测 被引量:1
18
作者 问永忠 贾澎涛 +2 位作者 夏敏高 张龙刚 王伟峰 《工矿自动化》 北大核心 2025年第1期31-37,77,共8页
针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSE... 针对井下危险区域人员监测视频存在光照不均匀、目标尺度不一致、遮挡等复杂情况,基于YOLOv8n网络结构,提出一种改进的井下人员多目标检测算法—YOLOv8n-MSMLAS。该算法对YOLOv8n的Neck层进行改进,添加多尺度空间增强注意力机制(MultiSEAM),以增强对遮挡目标的检测性能;在C2f模块中引入混合局部通道注意力(MLCA)机制,构建C2f-MLCA模块,以融合局部和全局特征信息,提高特征表达能力;在Head层检测头中嵌入自适应空间特征融合(ASFF)模块,以增强对小尺度目标的检测性能。实验结果表明:(1)与Faster R-CNN,SSD,RT-DETR,YOLOv5s,YOLOv7等主流模型相比,YOLOv8n-MSMLAS综合性能表现最佳,mAP@0.5和mAP@0.5:0.95分别达到93.4%和60.1%,FPS为80.0帧/s,参数量为5.80×106个,较好平衡了模型的检测精度和复杂度。(2)YOLOv8n-MSMLAS在光照不均、目标尺度不一致、遮挡等条件下表现出较好的检测性能,适用于现场检测。 展开更多
关键词 煤矿井下危险区域 井下人员多目标检测 YOLOv8n 多尺度空间增强注意力机制 自适应空间特征融合 轻量化混合局部通道注意力机制
在线阅读 下载PDF
基于改进YOLOv5的轻量级芯片封装缺陷检测方法 被引量:1
19
作者 赖武刚 李家楠 林凡强 《包装工程》 CAS 北大核心 2023年第17期189-196,共8页
目的 针对芯片封装缺陷检测过程中检测精度低与模型难部署的问题,提出YOLOv5-SPM检测网络,旨在提高检测精度并实现模型轻量化。方法 首先,通过在特征提取模块后增加通道注意力机制,提高缺陷通道的关注度,减少冗余特征的干扰,进而提升目... 目的 针对芯片封装缺陷检测过程中检测精度低与模型难部署的问题,提出YOLOv5-SPM检测网络,旨在提高检测精度并实现模型轻量化。方法 首先,通过在特征提取模块后增加通道注意力机制,提高缺陷通道的关注度,减少冗余特征的干扰,进而提升目标的检测精度。其次,在主干网络与颈部网络连接处使用快速特征金字塔结构,更好地融合了自建芯片数据集的多尺度特征信息。最后,将主干网络的特征提取模块更换为MobileNetV3,将常规卷积更换为深度卷积和点卷积,有效降低了模型尺寸和计算量。结果 经过改进后的新网络YOLOv5s-SPM在模型参数下降29.5%的情况下,平均精度较原网络提高了0.6%,准确率提高了3.2%。结论 新网络相较于传统网络在芯片缺陷检测任务中实现了模型精度与速度的统一提高,同时由于模型参数减小了29.5%,更适合部署在资源有限的工业嵌入式设备上。 展开更多
关键词 YOLOv5 芯片封装缺陷检测 通道注意力机制 特征金字塔池化 量化
在线阅读 下载PDF
基于EAST与SVTR的芯片表面字符识别方法
20
作者 阮红进 刘强 +1 位作者 姚子锴 谢谦 《计算机工程与设计》 北大核心 2025年第1期166-173,共8页
为提高芯片表面字符识别的实时性和准确率,提出一种基于EAST与SVTR的字符识别算法。针对EAST文本检测算法,将主干特征提取网络替换为轻量化的深度神经网络FasterNet-T0,减少网络的计算量;添加通道注意力机制自适应学习不同通道的权重分... 为提高芯片表面字符识别的实时性和准确率,提出一种基于EAST与SVTR的字符识别算法。针对EAST文本检测算法,将主干特征提取网络替换为轻量化的深度神经网络FasterNet-T0,减少网络的计算量;添加通道注意力机制自适应学习不同通道的权重分配,加强对重要特征的筛选。改进获得文本区域得分的损失函数,采用Dice损失缓解因图像背景面积过大导致误检的问题。文本方向校正算法对图像中任意方向的文本进行水平校正。由单一视觉模型的文本识别算法SVTR完成对字符的识别。实验结果表明,改进后文本检测算法的精确率、召回率较原算法分别提升了2.43%和4.66%,单帧图片的检测速度提升了0.005 s;添加文本方向校正算法后,识别准确率提升了1.92%。与现有方法对比,验证了该算法的有效性。 展开更多
关键词 芯片表面字符识别 文本检测 文本方向校正 文本识别 量化深度神经网络 高效通道注意力机制 损失函数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部