期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于EAST与SVTR的芯片表面字符识别方法
1
作者 阮红进 刘强 +1 位作者 姚子锴 谢谦 《计算机工程与设计》 北大核心 2025年第1期166-173,共8页
为提高芯片表面字符识别的实时性和准确率,提出一种基于EAST与SVTR的字符识别算法。针对EAST文本检测算法,将主干特征提取网络替换为轻量化的深度神经网络FasterNet-T0,减少网络的计算量;添加通道注意力机制自适应学习不同通道的权重分... 为提高芯片表面字符识别的实时性和准确率,提出一种基于EAST与SVTR的字符识别算法。针对EAST文本检测算法,将主干特征提取网络替换为轻量化的深度神经网络FasterNet-T0,减少网络的计算量;添加通道注意力机制自适应学习不同通道的权重分配,加强对重要特征的筛选。改进获得文本区域得分的损失函数,采用Dice损失缓解因图像背景面积过大导致误检的问题。文本方向校正算法对图像中任意方向的文本进行水平校正。由单一视觉模型的文本识别算法SVTR完成对字符的识别。实验结果表明,改进后文本检测算法的精确率、召回率较原算法分别提升了2.43%和4.66%,单帧图片的检测速度提升了0.005 s;添加文本方向校正算法后,识别准确率提升了1.92%。与现有方法对比,验证了该算法的有效性。 展开更多
关键词 芯片表面字符识别 文本检测 文本方向校正 文本识别 轻量化深度神经网络 高效通道注意力机制 损失函数
在线阅读 下载PDF
基于国产嵌入式智能计算平台的无人机检测方法 被引量:8
2
作者 崔令飞 郭永红 +2 位作者 修全发 史超 张硕阳 《兵工学报》 EI CAS CSCD 北大核心 2022年第S01期146-154,共9页
面向陆地战场上对反无人机侦察的现实需求,提出一种基于国产嵌入式智能计算平台的无人机检测方法。针对无人机体型小、易受战场环境影响而不易察觉的难题,采用红外、可见光图像和视频流等多源输入进行目标检测;针对嵌入式平台算力和存... 面向陆地战场上对反无人机侦察的现实需求,提出一种基于国产嵌入式智能计算平台的无人机检测方法。针对无人机体型小、易受战场环境影响而不易察觉的难题,采用红外、可见光图像和视频流等多源输入进行目标检测;针对嵌入式平台算力和存储能力有限的特性,构建轻量化深度神经网络,通过将单次多盒检测器(SSD)中的特征提取网络替换为MobileNet进行模型优化;选用国产嵌入式平台比特大陆SE5智能计算盒进行验证,完成模型转换和移植。实验结果表明:所提基于轻量化深度神经网络MobileNet-SSD的无人机检测方法在国产嵌入式智能计算平台上能够准确判断出目标的类别,且平均识别精度和帧率与在开发环境中运行差距不大。充分表明所提方法在国产嵌入式智能计算平台上进行移植后,能够在速度和精度方面满足应用环境对无人机检测算法实时性与准确性的要求。 展开更多
关键词 无人机检测 智能计算平台 反无人机 轻量化深度神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部