期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SecureViT的恶意代码检测模型
1
作者 张傲 刘微 +2 位作者 刘阳 李波 刘芳菲 《电子测量技术》 北大核心 2025年第16期113-121,共9页
随着恶意代码的多样性和隐蔽性不断增加,传统的恶意代码检测方法在面对未知恶意代码时往往面临高成本和不稳定性的挑战。本研究旨在提出一种轻量化且高效的恶意代码检测模型,以适应资源受限环境中的应用需求。本文提出了一种基于Secure... 随着恶意代码的多样性和隐蔽性不断增加,传统的恶意代码检测方法在面对未知恶意代码时往往面临高成本和不稳定性的挑战。本研究旨在提出一种轻量化且高效的恶意代码检测模型,以适应资源受限环境中的应用需求。本文提出了一种基于SecureViT的轻量化恶意代码检测模型。该模型通过引入ACF模块与MSDC模块实现高效特征提取与精准分类。ACF模块增强了模型对全局上下文信息的建模能力,MSDC模块则通过多尺度特征提取与动态显著性调整进一步提升特征表达的丰富性。实验结果表明,SecureViT模型在Malimg、Virus-MNIST和BIG2015数据集上的分类精度分别为97.46%、91.17%和95.49%,且计算开销仅为1.71 GMAC,显著提高了检测性能并有效降低了计算成本。该模型在恶意代码检测中展现了优异的检测精度与低计算复杂度,具备在资源受限环境中的实际应用潜力。 展开更多
关键词 恶意代码检测 上下文融合 多尺度卷积 轻量化深度学习模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部